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Dynamic Analysis of Laminated
Composite Coated Beams
Carrying Multiple Accelerating
Oscillators Using a Coupled Finite
Element-Differential Quadrature
Method
In this paper, a numerical algorithm using a coupled finite element-differential quadra-
ture (DQ) method is proposed for the dynamic analysis of laminated composite coated
beams subjected to a stream of accelerating oscillators. The finite element method with
cubic Hermitian interpolation functions is used to discretize the spatial domain. The DQ
method is then employed to discretize the time domain. The resulting set of algebraic
equations can be solved by either direct methods or iterative methods. It is revealed that
the DQ method stands out in numerical accuracy, as well as in computational efficiency,
over the well-known standard finite difference schemes, such as the Newmark, Wilson �,
Houbolt, and central difference methods, for the cases considered. Furthermore, in the
numerical examples, the effects of various parameters having something to do with the
title problem, such as lamina thickness, orientation of the coats, arrival time intervals,
velocities, and accelerations of the oscillators on the dynamic behavior of the system, are
investigated. The technique presented in this investigation is general and can be easily
applied to any time-dependent problem. �DOI: 10.1115/1.3114969�

1 Introduction
The problem of calculating the dynamic response of structures

excited by one or more moving oscillators is an interesting topic
of considerable engineering importance. The use of composite
materials in modern engineering has increased rapidly in recent
years due to their light weight and high strength. Furthermore,
laminated composite may be utilized as a coating to improve the
behavior of dynamic systems, such as reduction in vibrations and
noise and increase in total internal damping of the system �1�.
Many analytical and numerical methods have been proposed in
the past to study the dynamics of isotropic structures under the
influence of moving loads �2–10�. But little attention has been
paid to dynamics of laminated composite structures, besides, most
researchers have focused on the multimoving forces and masses
with constant speed and consequently constant arrival time inter-
vals. Hence, the aim of this work focuses on the influence of
properties of laminated composite and oscillators’ accelerations
and arrival time intervals on the dynamics of the system. Es-
mailzadeh and Ghorashi �11� analyzed the effects of shear defor-
mation and rotary inertia on the vibration of the Timoshenko beam
subjected to a traveling mass. In addition, Wang �12� investigated
the forced vibration of multispan Timoshenko beams due to a
moving force. The dynamic response of unsymmetric orthotropic
laminated composite beams subjected to a moving force was stud-
ied by Kadivar and Mohebpour �13,14�. Lee and Yhim �15� ana-
lyzed the dynamics of composite plates under the action of mul-
timoving loads based on a third order theory. The goal of this
work is to develop a numerical procedure for calculating the dy-

namic response of a laminated composite coated beam, subjected
to an arbitrary number of oscillators traveling along the beam at
arbitrary speeds and accelerations. The finite element �FE� method
is used for the spatial discretization, while the differential quadra-
ture �DQ� method is used for the temporal discretization. The
resulting set of algebraic equations can be solved by either direct
methods �such as the Gaussian elimination method� or iterative
methods �such as the Gauss–Seidel method�. This paper also pro-
vides a comprehensive comparative study of various time integra-
tion methods in context of the finite element formulation of mov-
ing load problems. It is revealed that the DQ method gives much
more accurate solutions than the traditional time step methods
using a considerably smaller number of time points and therefore
requiring relatively little computational effort.

2 Differential Quadrature Method
The DQ method is based on the idea that the derivative of a

function at the any discrete point is approximated by a weighted
linear sum of all the functional values in the whole domain �16�.
For example the first- and second-order derivatives of function
f�t� at time point ti can be expressed as

�df

dt
�

t=ti

= �
j=1

m

Aij
�1�f�tj� �1�

�d2f

dt2 �
t=ti

= �
j=1

m

Aij
�2�f�tj� �2�

where ti are the discrete time points, f�ti� are the function values at
these points, Aij

�1� and Aij
�2� are the weighting coefficients associated

with the first- and second-order derivatives, respectively, and m is
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the number of discrete time points. The weighting coefficients of
the first-order derivative are given by �17�

Aik
�1� = �

M�1��ti�
�ti − tk�M�1��tk�

i � k , i,k = 1,2, . . . ,m

− �
j=1,j�i

m

Aij
�1� i = k , i = 1,2, . . . ,m � �3�

where M�1� �t� is defined as

M�1��ti� = 	
j=1,j�i

m

�ti − tj� �4�

The weighting coefficients of the second-order derivative can be
obtained from the following recurrence relationship �18�:

Aik
�2� = �2
Aii

�1�Aik
�1� −

Aik
�1�

ti − tk
� i � k , i,k = 1,2, . . . ,m

− �
j=1,j�i

m

Aij
�2� i = k , i = 1,2, . . . ,m � �5�

In this work, the sampling time points are obtained from follow-
ing equations �0� t�T�:

t1 = 0, t2 = � � T, ti = T/2
1 − cos� �i − 2��
m − 2


� ,

�6�
i = 3,4, . . . ,m

where t2 is a time discrete point very close to the initial point
��-point�, and T is the time span.

3 Problem Formulation
To simplify the problem formulation, a symmetrical laminated

beam with three layers is considered �Fig. 35�. The top and bottom
layers consist of composite material. This simple model was also
used by several authors �1,19,20�, and is very suitable for studying
the dynamic behavior of laminated composite beams, subjected to
a set of moving oscillators. Let q oscillators arrive at the left end
of the beam, rested on visco-elastic foundation, at T1
=0,T2 , . . . ,Tq. If there are no external forces acting on the system,
the equations governing its vibration can be written in the form

�EI�eq
�4w

�x4 + �eq
�2w

�t2 + C0
�w

�t
+ K0w = − �

k=1

q

�Mkg + fk�t���h�t − Tk�

− h�t − �Tk + TTk�����x − xk�t�� �7�

Mkz̈k = fk�t�, k = 1,2, . . . ,q, Tk � t � Tk + TTk �8�

where �EI�eq and �eq are the equivalent bending stiffness and
equivalent mass per unit length of the beam, respectively, w�x , t�
is the transverse deflection of the beam, C0 and K0 are the foun-
dation parameters, Mk is the mass of the kth oscillator, h�t� is the
Heaviside unit-step function, ��x� is the Dirac delta function, zk�t�
is the deflection of the kth oscillator, TTk is the time required for
the kth oscillator to traverse the beam, xk�t� is the position coor-
dinate of the kth oscillator, and fk�t� is the interaction force be-
tween the beam and the kth oscillator. xk�t� and fk�t� are given by

xk�t� = vk�t − tk� + 1
2ak�t − tk�2 �9�

fk�t� = Kk�w�xk�t�,t� − zk�t�� + Ck�ẇ�xk�t�,t� − żk�t�� �10�

where vk and ak are the arrival velocity and the acceleration of the
kth oscillator, while Kk and Ck are stiffness and damping coeffi-
cients of the kth oscillator suspension. To obtain a FE model, the
beam is divided into n number of elements. Using the weak for-

mulation and finite element approximation, Eq. �7� can be written
as

�Me��ẅe� + �Cfn
e ��ẇe� + ��Kfn

e � + �Ke���we� = �Fe� + �Qe� �11�

where

Kij
e = �EI�eq�

xe

xe+1 d2�i
e

dx2

d2� j
e

dx2 dx, i, j = 1,2,3,4 �12�

Mij
e = �eq�

xe

xe+1

�i
e� j

edx, Cfnij

e = C0�
xe

xe+1

�i
e� j

edx ,

�13�

Kfnij

e = K0�
xe

xe+1

�i
e� j

edx

we�x,t� = �
j=1

4

wj
e�t�� j

e�x� �14�

Fi
e�t� = − �

k=1

q

�Mkg + fk�t���h�t − tin,k
e � − h�t − tin,k

e + ttk
e ���i

e�xk�t��

xe � xk�t� � xe+1, k = 1,2, . . . ,q �15�

where �i
e are the Hermit cubic interpolation functions, tin,k

e is the
time at which the kth oscillator arrives at left-hand side of the eth
element, and ttk

e is the traveling time of the kth oscillator for eth
element. One can easily see from Eq. �15� that all nodal forces of
the beam are equal to zero except those of the beam element on
which the moving loads are applied. For the differential quadra-
ture solution, consider m sampling points in the time domain, 0
� t� tT, where tT is the total traveling time of all oscillators. From
Eqs. �1� and �2�, the first- and second-order derivatives of zk�t�
and w�xk�t� , t� may be written in matrix notation as

�żk� = �A��1��zk�, �z̈k� = �A��2��zk� �16�

�ẇd,k� = �A��1��wd,k� �17�

where

�zk� = �zk�t1� zk�t2� ¯ zk�tm��T �18�

�wd,k� = �w�xk�t1�,t1� w�xk�t2�,t2� ¯ w�xk�tm�,tm��T

�19�

Now, the quadrature analog of Eq. �8� can be written in matrix
notation as

�Mk�A��2� + Ck�A��1�+Kk�I���zk� = �Ck�A��1� + Kk�I���wd,k�
�20�

Applying the initial conditions of the kth oscillator, Eq. �20� can
be written in the following form:

�zk� = �Bk��wd,k� + �Nk� �21�

In the case of zero initial conditions for the kth oscillator, Eq. �21�
is reduced to

�zk� = �Bk��wd,k� �22�

In order to simplify the calculation of components of load vector
of each element in which the kth oscillator is traveling, the fol-
lowing definitions are introduced:

��i,k
e � = ��i

e�xk�tj�� , xe � xk�tj� � xe+1

0, xk�tj� � xe or xk�tj� 	 xe+1
� ,

�23�
i = 1,2,3,4, j = 1,2, . . . ,m
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��i,k
e � = diag��i,k

e � �24�

Using Eqs. �23� and �24� and

we�xk�ti�,ti� = �
j=1

4

wj
e�ti�� j

e�xk�ti�� �25�

The vector �wd,k� would be written as

�wd,k� = �
e=1

n

���1,k
e ��w1

e� + ��2,k
e ��w2

e� + ��3,k
e ��w3

e� + ��4,k
e ��w4

e��

= �
e=1

n

�
j=1

4

�� j,k
e ��wj

e� �26�

where

�wj
e� = �wj

e�t1� wj
e�t2� ¯ wj

e�tm�T� �27�

Now, consider the first equation of the system of equations �11�,
the quadrature analog of this equation may be written in matrix
notation as

�M11
e �A��2� + Cfn11

�A��1� + �K11
e + Kfn11

��I���w1
e� + �M12

e �A��2�

+ Cfn12
�A��1� + �K12

e + Kfn12
��I���w2

e� + �M13
e �A��2� + Cfn13

�A��1�

+ �K13
e + Kfn13

��I���w3
e� + �M14

e �A��2� + Cfn14
�A��1� + �K14

e

+ Kfn14
��I���w4

e� = �F1
e� + �Q1

e� �28�

where

�F1
e� = �F1

e�t1� F1
e�t2� ¯ F1

e�tm�T� �29�

�Q1
e� = �Q1

e�t1� Q1
e�t2� ¯ Q1

e�tm�T� �30�

The force vector in right side of Eq. �28� can be written as

�F1
e� = �

k=1

q

�− Mkg��1,k
e � + ��1,k

e ���Kk���Bk� − �I���wd,k� + Ck�A�

���Bk� − �I���wd,k��� �31�

Equation �31� can also be rewritten as

�F1
e� = �

k=1

q

�− Mkg��1,k
e � + ��1,k

e ��Dk��wd,k�� = �F1
e�g + �F1

e�int

�32�

Using �Dk� as

�Dk� = �Ck�A��1� + Kk�I����Bk� − �I�� �33�

From Eqs. �26� and �32� one can obtain

�F1
e�int = �

k=1

q

��1,k
e ��Dk��

e=1

n

�
j=1

4

�� j,k
e ��wj

e� �34�

Applying the above procedure to the remaining three equations of
the system of equations �11� yields

�Kexp
e ��w�� = �Fexp

e � + �Qexp
e � �35�

The subscript “exp” means that the associated matrix or vector is
written in the global coordinate system, and �w�� is the global
nodal vector as

�w�� = ��w1�T �w2�T
¯ �w2n+2�T�T �36�

The assembled matrices can be easily obtained as

�K�� = �
e=1

n

Kexp
e , �F�� = �

e=1

n

Fexp
e , �Q�� = �

e=1

n

Qexp
e �37�

and finally

�K���w�� = �F�� + �Q�� �38�

where �K�� is the �2n+2�m� �2n+2�m matrix and �w��, �f��, and
�Q�� are the �2n+2�m�1 vectors.

4 Solution of Resulting Algebraic Equations
By using the proposed mixed methodology we finally obtained

a large system of algebraic equations for the nodal values contain-
ing both discretized space and time points �Eq. �38��. After apply-
ing the initial and boundary conditions to this equation, one can
easily solve the resulting equations by using the direct methods or
iterative methods for unknown displacements. In this work the
Gaussian elimination method is used to solve the resulting alge-
braic equations. Before solving Eq. �38�, and after applying the
boundary conditions to this equation, it is better to rewrite this
equation in the standard partitioned form


�K�ii� �K�id�
�K�di� �K�dd�

�
 �w�i�
�w�d�

� = 
�F�i�
�F�d�

� �39�

In this matrix equation, the subscripts i and d indicate the sample
time points used for writing the quadrature analog of the initial
conditions and the ordinary differential equations, respectively. By
eliminating the column vector �w�i� , the matrix equation �39� is
reduced to the following algebraic equation:

�K���w�d� = �F�� �40�
where

�K�� = �K�dd� − �K�di��K�ii�
−1�K�id� �41�

�F�� = �F�d� − �K�di��K�ii�
−1�F�i� �42�

After solving Eq. �40� for displacements, one can use the
Lagrange interpolation scheme to obtain the solutions at all the
time domain.

5 Numerical Stability
Numerical stability is a crucial issue for a computational

method. It is of great importance to know whether a numerical
algorithm is stable or not. The DQ method approximates the par-
tial derivative of a function with respect to a space/time variable
at a given discrete point as a weighted linear sum of the function
values at all discrete points. This is in contrast to the standard
finite difference method �FDM� in which a solution value at a
point is a function of values at adjacent points only. Actually, the
DQ method is an extension of the FDM �18�. It is also shown that
when the grid points are chosen to be Chebyshev collocation
points, the DQ method is identical to the Chebyshev collocation
method �18�. As we know, the FDM and Chebyshev collocation
method are stable. Hence due to the natural equivalence between
the DQ method and these methods, it is expected that the DQ
method to be also stable. The stability of the DQ method for
solving various static problems was shown in Ref. �16� and the
references therein. However, to obtain accurate and stable results
the number of sample points cannot be too large. In other words,
the resulting DQ discretization matrix tends to become ill-
conditioned when a very large number of sample points are used.
To overcome this difficulty one should carefully select the order-
ing of sample points to get a well-conditioned DQ discretization
matrix. For example, for the present problem, the use of equally
spaced sample points may result in ill-conditioned matrix �K��.
This ill-conditioning can be removed by using the nonuniform
sample points. But when the number of time points is very large,
it is better to use this type of points with an adjacent �-point �Eq.
�6��. Note that the �-technique, as proposed in Ref. �16�, is not
used in this work. The derivative initial conditions are exactly
satisfied at initial points and therefore the numerical solutions do
not depend on the choice of �-value. We only use this type of
points to calculate the weighting coefficients.
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However, it is evident that when the proposed formulation is
applied to multidimensional problems, the dimension of resulting
matrix �K�� is too large. Hence the virtual storage required in-
creases considerably. Furthermore, this may lead to difficulties in
obtaining the solution or even worse, reduce the accuracy of the
solutions. This may also affect the stability of the scheme. These
difficulties can be overcome by using the multidomain DQ tech-
nique. In this technique, the time domain is decomposed into sev-
eral time elements. For each time element, a procedure similar to
a single time domain, as stated before, can be repeated. Since the
time domain is not bounded, this procedure can be performed
independently for each time element. Note that the initial condi-
tions of the �i+1�th time element can be obtained using the solu-
tions of the ith time element. The solution procedure is summa-
rized bellow for use in a computer program. It is assumed that the
time domain is divided into nT equal DQM time elements with an
equal number of sample time points.

For Part A: initial calculations,

1. form element matrices �Me�, �Ce�, and �Ke�
2. select nT �number of time elements� and m �number of time

points per element�
3. form weighting coefficient matrices �A��1� and �A��2�

4. form matrix �K��

For Part B: for each time element,

1. form vector �f��
2. solve Eq. �40� by either direct methods �such as the Gauss-

ian elimination method� or iterative methods �such as the
Gauss–Seidel method� for unknown displacements

3. evaluate the derivative initial conditions of the next time
element

6 Numerical Accuracy
Consider a function f�t�, which is approximated by the

Lagrange interpolation polynomial of degree �m−1�. The error for
the rth order derivative approximation of this function at point ti
can be obtained as �18�

E�r��f�ti�� =
f �m��
� · M�r��ti�

m!
, i = 1,2, . . . ,m �43�

where

M�t� = 	
j=1

m

�t − tj� �44�

It may be seen that very high accuracy can be achieved even if the
number of sample points, m, is not too large. Also the accuracy of
DQ method is proportional to m or its power.

7 Numerical Results and Discussion
Before studying the title problem, two numerical examples are

presented, and the superiority of the DQ method over the classical
implicit step methods, such as the Newmark, Wilson �, Houbolt,
and central difference methods, is demonstrated. Parameters �
=0.25 and �=0.5 are taken in the Newmark scheme and �=1.4 in
the Wilson � method �21�.

7.1 Example 1: Vibration of a Simply Supported Beam
Due to a Moving Point Load. Consider a concentrated load mov-
ing with a constant speed on a simply supported beam. The pa-
rameters used in this numerical example are as follows:

EI/� = 104 m4/s2, M/�L = 0.001, L = 50 m, Tf = 50/� s

This problem has an analytical solution �22�, and the accuracy of
the proposed mixed methodology is demonstrated by comparing
the calculated results with those of analytical solutions.

The central displacements of the beam are calculated for differ-
ent values of v �velocity of moving load�. Figures 1–3 present the
convergence of solutions with respect to the number of sample
time points for v=0.1, 0.2, and 0.75 m/s, respectively. Note that
the central displacement values at all the time domain �i.e., 0� t
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Fig. 1 Convergence of solutions with respect to the number of
sample time points for v=0.1 m/s „n=4…
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�T where T=L /v� are obtained by the Lagrange interpolation
from the quadrature solution results at discrete time points. It can
be seen that the converging trend of solutions is excellent. The
solution convergence behaviors according to the number of finite
elements for v=0.1, 0.2, and 0.75 m/s are shown in Figs. 4–6,
respectively. A very good convergence behavior is observed. Fig-
ures 7 and 8 present the central displacement of the simply sup-
ported beam for v=0.1 m /s. As it can be seen, the DQ method
gives better accuracy than other finite difference schemes using a
smaller number of time points. Numerical results for v
=0.2 m /s are shown in Figs. 9 and 10. It is seen that the DQ
method can obtain more accurate solutions than other schemes
using a considerably smaller number of sample time points. Fig-
ures 11 and 12 illustrate the results for v=0.75 m /s. Again, the
DQ method shows high accuracy and efficiency. From Figs. 7, 9,
and 11 it is seen that all the time step methods have a great loss of
accuracy when a small number of grid time points are used for
time discretization. From Fig. 13, one sees that the solutions ob-
tained by various direct integration schemes are not acceptable in
accuracy, while the DQ method presents high accuracy. When a
large number of time points are used for time discretization, Fig.
14 illustrates the results for v=2.5 m /s. As seen, all the finite
difference schemes provide the exact solution using a sufficiently
large number of time points. From Fig. 15, it is seen that except
for the DQ method, all other schemes have a great loss of accu-
racy. When a larger number of time points are used, Fig. 16 shows

distinct performance of various time step schemes. It is seen that
all methods provide the exact solution. From the DQM solutions
shown in the Figs. 1–16, it is found that the number of time points
required to achieve accurate solutions only depends on the shape
of dynamic responses �the value of v, in this case�. As the velocity
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Fig. 4 Convergence of solutions with respect to the number of
finite elements for v=0.1 m/s „m=115…
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Fig. 6 Convergence of solutions with respect to the number of
finite elements for v=0.75 m/s „m=21…
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Fig. 7 Central displacement of a simply supported beam sub-
jected to a moving point load „v=0.1 m/s, n=4, and m=115…
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Fig. 8 Central displacement of a simply supported beam sub-
jected to a moving point load „v=0.1 m/s and n=4…
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of the moving point load increases, the shape of dynamic re-
sponses becomes smoother, hence the number of time points re-
quired to obtain accurate results decreases, since the DQ method
is basically based on polynomial interpolation and derivation. To
demonstrate the rate of convergence of the presented mixed meth-

odology, the percent errors in displacements �defined as
�wnumerical−wexact� /wexact�100� are calculated for different values
of v and m. In Figs. 17–20, the percent error in solutions is plotted
against the number of time points. As seen, the rate of conver-
gence and accuracy of the DQM are superior over the traditional
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Fig. 9 Central displacement of a simply supported beam sub-
jected to a moving point load „v=0.2 m/s, n=4, and m=60…
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Fig. 10 Central displacement of a simply supported beam sub-
jected to a moving point load „v=0.2 m/s, and n=4…

0 10 20 30 40 50 60 70
−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

t: sec

C
en

tr
al

di
sp

la
ce

m
en

t:
m

Exact

DQ

Wilson

Newmark

Houbolt

Fig. 11 Central displacement of a simply supported beam sub-
jected to a moving point load „v=0.75 m/s, n=6, and m=21…
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Fig. 12 Central displacement of a simply supported beam sub-
jected to a moving point load „v=0.75 m/s and n=6…
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Fig. 13 Central displacement of a simply supported beam sub-
jected to a moving point load „v=2.5 m/s, n=4, and m=11…
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Fig. 14 Central displacement of a simply supported beam sub-
jected to a moving point load „v=2.5 m/s and n=4…
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time step methods. To investigate the effect of �-value on accu-
racy and stability of numerical results, numerical experiments are
carried out for different values of � and the results are shown in
Figs. 21 and 22. It can be seen clearly from Figs. 21 and 22 that
the accuracy and stability of results do not depend on the choice

of �-value. In Figs. 23 and 24, the percent error in solutions is
plotted against the number of time points without and with
�-point. The results of other time step methods are also included
for comparison. It can be observed from Figs. 23 and 24 that when
the �-point is used better accuracy and convergence are achieved.
To test the accuracy, convergence, and stability of mixed FE and
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Fig. 15 Central displacement of a simply supported beam sub-
jected to a moving point load „v=5 m/s, n=4, and m=8…
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Fig. 16 Central displacement of a simply supported beam sub-
jected to a moving point load „v=5 m/s and n=4…
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Fig. 17 Convergence of solutions with respect to the number
of sample time points for v=0.05 m/s „n=8…

30 40 50 60 70 80 90 100 110 120
−1

−0.5

0

0.5

1

1.5

2

2.5

Number of sample time points

P
er

ce
nt

er
ro

r
in

W
(L

/2
,0

.0
05

T
) DQ

Newmark

Wilson

Houbolt

Fig. 18 Convergence of solutions with respect to the number
of sample time points for v=0.25 m/s „n=6…
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Fig. 19 Convergence of solutions with respect to the number
of sample time points for v=0.5 m/s „n=4…

12 14 16 18 20 22 24
−250

−200

−150

−100

−50

0

50

Number of sample time points

P
er

ce
nt

er
ro

r
in

W
(L

/2
,T

) DQ
Newmark
Wilson
Houbolt

Fig. 20 Convergence of solutions with respect to the number
of sample time points for v=1 m/s „n=6…
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multidomain DQ techniques, the present numerical example is
considered. Figures 25 and 26 present the convergence behavior
of solutions with respect to the number of time elements �nT�. It is
observed that the solutions have excellent accuracies without in-
stability for an increase in the number of time elements. Also, the

total number of time points �Mtot=nT�m−1�+1� required to
achieve accurate solutions is minimum when a single time ele-
ment is used.

7.2 Example 2: Vibration of an Elastic Beam Carrying
Moving Linear Oscillator. Consider an elastic beam subjected to
a moving oscillator. The beam and oscillator parameters are given
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Fig. 21 Effect of �-value on accuracy and stability of numeri-
cal results „v=2 m/s and n=4…
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Fig. 24 Convergence of solutions with respect to the number
of sample time points for v=7 m/s „n=4…
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Fig. 26 Convergence of solutions with respect to the number
of time elements for v=1.5 m/s „n=4…
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by EI /�=275.4408 m4 /s2, M /�L=0.2, K=2000 N /m, and L
=6 m �23�.

To be consistent with the cited work, the negative response
�−w�x , t�� is shown in the figures.

Figures 27 and 28 demonstrate the solutions’ convergence be-
havior for the clamped-clamped beam subjected to a moving lin-
ear oscillator with respect to the number of sample time points
and finite elements, respectively. The convergence behavior of
solutions is excellent, and it is evident that only 22 sample time
points is sufficient for this case. The results are also in good agree-
ment with those found in Ref. �23�. Figures 29 and 30 present the
midspan deflection of the clamped-clamped beam for v=6 m /s.
As seen, when a small number of time points are used for time
discretization the solutions of the conventional time step methods
encounter a sharp drop of accuracy in long-term response, while
the DQ method exhibits high accuracy and efficiency. Figures 31
and 32 present the midspan displacement of the simply supported
beam for v=6 m /s. As it can be seen, the solutions of the New-
mark and Houbolt methods have visible phase shift and a great
loss of accuracy in long-term response. Figures 33 and 34 show
the central displacement of the simply supported beam for v
=6 m /s. Again, the DQ method gives better accuracy than other
methods using a smaller number of time points. From Figs. 29,
31, and 33 one can also observe the numerical damping of the

Houbolt method. Figures 30, 32, and 34 also show that the central
difference method produces accurate results only when a very
large number of sample points are used for time discretization
�i.e., a very small time step need to be used�.
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of finite elements for v=6 m/s „m=25…
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Fig. 29 Central displacement of a clamped-clamped beam
subjected to a moving oscillator „v=6 m/s, n=6, and m=37…
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jected to a moving oscillator „v=6 m/s, n=6, and m=53…
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7.3 Forced Vibration of a Laminated Composite Coated
Beam Due to a Moving Oscillator. Figure 35 shows the cross
section of a laminated composite coated beam and associated pa-
rameters, h and H. In this figure h and H are the half thickness of

the core and the half thickness of the laminated coated beam,
respectively. It is assumed that the core is made from steel and the
faces are made from glass-epoxy composite material. In this nu-
merical example, the following data for the laminated composite
coated beam and oscillator are used:

E11 = 38.6 GPa, E22 = 8.27 GPa, G12 = 4.14 GPa,

Ec = 200 GPa

�12 = 0.26, H = 1 m, � f = 1759 Kg/m3,

�c = 7850 Kg/m3, L = 30 m

M = 4 � 104 kg, K = 9 � 106 N/m, C = 8 � 104 Ns/m,

b = 2 m

where Ec, � f, �c, and b are the core Young’s modulus, the density
of the beam faces, the density of the core, and the beam width,
respectively. Figures 36 and 37 show the effects of parameters
h /H and orientation of the coats, �, on the dynamic magnification
factor. In the results shown in Figs. 36 and 37 the velocity of the
oscillator is assumed to be constant and equals to 30 m/s. From
these figures, one sees that the shape of curves become smoother
as the h /H increases or � decreases. In Figs. 38 and 39, the dy-
namic magnification factor versus the velocity of moving oscilla-
tor for different values of � and h /H is presented. From Fig. 38, it
can be seen that the critical velocity �the velocity at which the
maximum dynamic central deflection appears� first decreases and
then increases when the h /H increases. As seen in Fig. 39, the
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Fig. 32 Central displacement of a simply supported beam sub-
jected to a moving oscillator „v=6 m/s and n=6…
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Fig. 35 Laminated composite coated beam cross section
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critical velocity decreases as the � increases because the beam is
stiffer when the coats orientate at �=0. It is evident that the dy-
namic magnification factor can be controlled by choosing the
proper fiber orientation or lamina thickness. From Fig. 39 it is
seen that at high speeds the dynamic magnification factor for

glass-epoxy beam is considerably lower than that for steel beam,
in spite of the fact that the weight of composite beam is approxi-
mately 4.46 times less than that of the steel beam. Also the critical
velocity for both materials is approximately the same. In Fig. 40,
the variation in dynamic magnification factor versus the equiva-
lent bending stiffness of the composite laminated beam is shown
for different values of v. As it can be seen, the dynamic magnifi-
cation factor first both increases and decreases with decreasing
�EI�eq and takes its maximum value �This maximum value de-
pends on the velocity of the moving oscillator.� After that, the
dynamic magnification factor decreases rapidly with decreasing
�EI�eq and approaches zero.

7.4 Forced Vibration of a Simply Supported Laminated
Composite Coated Beam Due to a Stream of Accelerating
Oscillators. In this section, several numerical experiments are
presented in order to study the effects of moving oscillators’ ve-
locities, accelerations, and decelerations on the beam vibration.
We consider the case where two identical oscillators �i.e., M1
=M2, K1=K2, and C1=C2� traverse a simply supported laminated
composite coated beam. The parameters for the beam and oscilla-
tors are the same as those employed in Sec. 7.3. Also h /H=0.5
and �=45 are considered. Figures 41 and 42 show the effects of
moving oscillators’ velocities and arrival time interval, 
T=T2
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Fig. 38 Influence of h /H and velocity of moving oscillator on
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Fig. 39 Influence of � and velocity of moving oscillator on the
dynamic magnification factor, h /H=0; �=0 „dotted line…, �=45
„dashed line…, and �=90 „solid line…
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−T1, on the maximum central deflection for two cases: v2�v1 and
v2�v1. As it can be seen, the maximum value of maximum cen-
tral displacements increases when the velocity of second oscillator
increases. From these figures one can conclude that for v2�v1,
the maximum magnitude of maximum central deflection occurs
when 
T is zero, i.e., they start at the same time to move, and for
v2�v1 it occurs at certain value of 
T, which depends on the
velocities of the oscillators and natural frequency of the beam.
From Fig. 42 one also sees that the magnitude of 
T, at which the
maximum central deflection occurs, and the corresponding deflec-
tion increase as the velocity of the second oscillator increases.
From these figures one also sees that after a certain value of 
T,
the maximum central deflection behaves as a periodic function of

T. This trend of maximum central deflection also is seen in the
accelerating and decelerating motion of oscillators �see Figs.
43–46�.To investigate the influence of moving oscillator accelera-
tion and arrival time interval, 
T on the maximum central deflec-
tion, the arrival velocity of two oscillators is set to v1=v2
=30 m /s, and two cases are considered: a2�a1 and a2�a1. Fig-
ures 43 and 44 illustrate the results for these cases. As can be
seen, the maximum central deflection increases as the acceleration

of the second oscillator increases. In Figs. 45 and 46 the influence
of moving oscillators’ deceleration and arrival time interval on the
maximum central deflection, for two cases: �a2�� �a1� and �a2�
� �a1�, are shown. In these cases the arrival velocity of two oscil-
lators is set to: v1=v2=50 m /s. As seen, the maximum central
deflection only slightly changes as the second oscillator decelera-
tion varies from 0 m /s2 to −40 m /s2.

8 Conclusions
An efficient coupled FE-DQM is introduced and developed to

analyze the dynamics of laminated composite coated beams car-
rying a set of accelerating oscillators. The finite element method is
used to discretize the spatial domain. The DQ method is then
employed to discretize the time domain. The stability, rate of con-
vergence, and accuracy of the presented mixed methodology are
demonstrated by different numerical examples. It is shown that
the DQ method gives much more accurate solutions than the stan-
dard time step methods, such as the Newmark, Wilson �, Houbolt,
and central difference methods, using a considerably smaller num-
ber of time points �i.e., using a bigger time steps� and therefore
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Fig. 42 Maximum central deflections of the beam due to two
oscillators for v2�v1, v1=30 m/s; v2=30 m/s „dotted line…, v2
=40 m/s „dashed line…, and v2=50 m/s „solid line…
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Fig. 43 Maximum central deflections of the beam due to two
oscillators for a2�a1, a1=20 m/s2; a2=0 m/s „dotted line…, a2
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Fig. 44 Maximum central deflections of the beam due to two
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Fig. 45 Maximum central deflections of the beam due to two
oscillators for �a2�� �a1�, a1=−20 m/s2; a2=0 „dotted line…, a2
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requiring relatively little computational effort. In the numerical
examples the effects of various parameters, such as velocities,
accelerations, decelerations, and arrival time intervals of oscilla-
tors, as well as lamina thickness, and orientation of the coats on
the dynamic behavior of the system, are studied. It is shown that
all the above-mentioned parameters have significant influence on
the dynamic behavior of the system. The proposed algorithm is
general and can be easily used to solve various time-dependent
problems.
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Elasticity Approach to Load
Transfer in Cord-Composite
Materials
An elasticity approach to the mechanics of load transfer in cord-reinforced composite
materials is developed. Finite cords embedded in an elastic matrix and subjected to axial
loading is considered, and the extension-twist coupling of the cords is taken into account.
Closed form solutions for the axial force and twisting moment in the cord, the shear
stresses at the cord-matrix interface in the axial and circumferential directions, the ef-
fective axial modulus of the cord, and the apparent modulus of the cord composite are
presented. An example of a cord composite typical of what can be found in steel-belted-
radial tires is used to illustrate the results. It was found that large shear stresses occur at
the cord-matrix interface in both the axial and circumferential directions at the cord ends
and that the effective modulus of the cords may be greatly reduced. As a result, the
apparent modulus of the composite may be significantly less than that found by a con-
ventional application of the rule-of-mixtures approach. �DOI: 10.1115/1.3130442�

1 Introduction
The mechanics of load transfer from the matrix to the cords in

cord-reinforced composite materials is considered. Cord-
composite materials are used in a wide variety of applications
including automobile and truck tires and hoses. The desire to
model cord-composite materials using the bulk properties of the
composite indicates the need for a mathematical model of the
mechanics of load transfer and the development of an apparent
modulus for the composite.

In the literature on fiber-reinforced composite materials, inves-
tigators took analytical, experimental, and numerical approaches
to better understand the mechanics of load transfer in composite
systems ranging from paper to Kevlar/epoxy. Many authors used
the analytical results of Cox �1� and Dow �2� as the benchmarks to
which they compare their results.

Cox �1� presented an approximate analytical model for load
transfer in fiber-reinforced composite materials consisting of finite
fibers embedded in an elastic matrix. The study primarily focused
on the behavior of paper. Cox analyzed the effect of fiber geom-
etry and orientation on the stiffness and strength of fiber-
reinforced composite materials. A model for load transfer from the
matrix to the fiber was developed. It was assumed that the matrix
and fiber are elastic, that the matrix and fiber are perfectly bonded,
that load transfer occurs through shear stresses at the fiber-matrix
interface, and that no load transfer occurs on the fiber ends. Cox
concluded that using a reduced value for the elastic modulus of
the fibers represents the effect of short fibers. Cox compared the
model with experimental results and found moderately good
agreement.

Outwater �3,4� developed an analytical model for the mechan-
ics of load transfer for short fibers embedded in resin. Resin
shrinkage, yielding of the resin, debonding of the ends and sides
of the fibers from the resin, and friction between the resin and the
fibers along the debonded surfaces were taken into account. The
system considered in the paper was glass fiber-reinforced polyes-
ter. The study yielded expressions for the modulus of a fiber-
reinforced composite material. Outwater found that until debond-
ing occurred, the modulus of elasticity of the composite is

approximately equal to the product of the fiber volume fraction
and the fiber modulus. After the ends of the fibers are debonded
from the resin, the composite modulus is reduced. Outwater quali-
tatively compared his model for load transfer favorably with the
load-deformation plots for two specimens from a previous experi-
mental study by Freas �5�.

Dow �2� conducted an analytical study of the stresses near a
discontinuity in fiber-reinforced composite materials and devel-
oped both an elastic model and a model that takes plasticity of the
matrix into account. Stresses were calculated and plotted for an
aluminum oxide whiskers/pure aluminum composite material sys-
tem. Dow concluded that high shear stresses near discontinuities
must be accommodated to take advantage of the properties of
high-strength fibers and that there is a filament length required for
effectiveness. Rosen et al. �6� investigated the mechanical proper-
ties of fibrous composites used in aerospace vehicles and included
an analysis of the effect of fiber length on those properties. Their
model consists of a finite cylindrical fiber that is embedded in a
concentric cylindrical binder of the same length that is embedded
in the composite. An estimate of the fiber stress, matrix shear
stress, and shear stress distribution along the fiber/matrix interface
is given, and the effects of both an elastic matrix and an elastic-
plastic matrix are considered. Short fibers are taken into account
by defining the fiber efficiency and an ineffective fiber length in
determining composite strength. They fabricated, analyzed, and
tested glass/plastic composite systems and favorably compared
the analytical results with the experimental results. Rosen �7� pre-
sented a refined mathematical model and the experimental results
of the tensile failure of fibrous composites. Studies by Dow and
Rosen �8� and Rosen �9� that included a similar treatment of the
stresses near the ends of discontinuous fibers in an elastic matrix
followed.

Schuster and Scala �10� studied the mechanical interaction of
sapphire whiskers with a birefringent matrix using photoelastic
techniques. They concluded that the interfacial stresses found ex-
perimentally agreed well with those found analytically with the
model developed by Dow �2�.

Tyson and Davies �11� conducted a photo-elastic study of the
shear stresses associated with the transfer of stress from the matrix
to the fiber reinforcement and compared their experimental results
with the models developed by Cox �1� and Dow �2�. They used an
Araldite CT200 with hardener HT 901/Dural matrix/fiber system.
Near the fiber end, the shear stresses at the fiber/matrix interface
parallel to the fiber axis found experimentally were much larger
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than the theoretically determined values. Tyson and Davies attrib-
uted the difference between the experimental and theoretical val-
ues to the square corner of the fiber end. The experimental results
show that the models of Cox and Dow predict the shear stresses
reasonably accurately two or more fiber diameters from the end of
the fiber.

Allison and Hollaway �12� conducted further tests to determine
the stresses in fiber-reinforced materials using the photoelastic
method with an Araldite CT200 with hardener HY901/Dural
matrix/fiber system. The complete stresses around an isolated fiber
surrounded by an elastic matrix subjected to uniaxial tension were
found. The stresses for fibers with square ends and round ends
were investigated. They concluded that the stresses around fibers
with round ends are greater than the stresses around fibers with
square ends. No direct comparisons were made between the
photo-elastic results and the results of Cox �1� or Dow �2�.

Carrara and McGarry �13� used finite element analysis to study
the matrix and the interface stresses in single filament glass/resin
and sapphire/resin composites for various filament-tip geometries.
They found that matrix stresses depend strongly on the fiber tip
geometry. They compared their results favorably with those of the
Cox �1� model for a fiber with a blunt end.

Smith and Spencer �14� developed an approximate solution to
the interfacial tractions between the fiber and the matrix using the
theory of elasticity. They compared their results for the shear
stress at the interface with those of Dow �2� and found good
agreement for the silica fiber/aluminum matrix system they con-
sidered.

Galiotis et al. �15� experimentally determined the fiber strain by
resonance Raman spectroscopy and compared their results with
those of the Cox �1� model. They found that for high matrix
strains, the Cox model described well the strain distribution along
the fiber for a composite system consisting of one polydiacetylene
single crystal fiber in an epoxy resin. In a related paper, Robinson
et al. �16� studied polydiacetylene/epoxy composites and the ef-
fect of resin shrinkage experimentally using Raman spectroscopy
to determine the fiber strain and found good agreement between
their experimental results and those of the Cox model.

Whitney and Drzal �17� used elasticity theory to develop an
approximate solution for the stress distribution around an isolated
fiber fragment. They found good agreement between the predicted
and experimentally determined values for the critical fiber lengths
for AS-4 graphite fibers embedded in an epoxy matrix and to a
lesser extent good agreement for Kevlar 49 aramid fibers embed-
ded in an epoxy Epon 828 with the stoichiometric amount of
metaphenylenediamine �mPDA� matrix.

Termonia �18,19� used the finite difference method to develop a
computer model for the elastic properties of short fiber and par-
ticulate filled polymers. The numerical results were successfully
verified with experimental data available in the literature for the
composite modulus for glass fibers in a polyester resin, silica par-
ticles in an epoxy resin, and other composite systems.

Nairn �20� used a variational mechanics approach to the prob-
lem of stresses around breaks in embedded fibers. The results
were compared with those found by using the solution of Cox �1�
and by the finite element method for a carbon fiber/epoxy matrix
composite system. It was found that there were significant differ-
ences between the variational mechanics approach and the Cox
method results and good agreement between the variational me-
chanics approach and the FEM results.

Related studies in the literature include fiber pullout, fiber push-
out, fiber debonding, interfacial debonding, matrix cracking, fiber
breaking, fracture, and damage modeling of composite materials.

In the literature on cord-reinforced composite materials, Paris et
al. �21� presented an analytical model of the load-deformation
behavior of cord-reinforced composites consisting of infinitely
long cords embedded in an elastic matrix, where the extension-
twist coupling of the cords was taken into account. In three pa-
pers, Shield and Costello �22–24� reported on studies of the be-

havior of cord-composite plates. In two papers, Paris and Costello
�25,26� presented an analysis of cord-composite cylindrical shells.
In each of these studies, it was assumed that the end effects of the
cords could be neglected, and load transfer through shear stresses
at the cord-matrix interface was not considered.

Velinsky et al. �27� developed the theory that is used to model
the axial response of the cords. The book by Costello �28� reviews
the theory developed in that paper as well as other issues related
to wire rope. In those works, it was found that the cord extension
and twist are coupled; the cord axial force and twisting moment
are linearly proportional to the axial strain and twist of the cord.
Prakash et al. �29� and Velinsky �30� considered the compression
of a cord and found that cords are bimodular and behave differ-
ently in tension than in compression. In the following analysis, the
bimodular characteristics of the cords are neglected.

The matrix is modeled as linear-elastic. Relations between
stress and strain are found in the book by Love �31�. It is assumed
that the cords are perfectly bonded to the matrix. Approximate
solutions for the axial force and twisting moment in the cord, the
shear stresses at the cord-matrix interface in the axial and circum-
ferential directions, the effective axial modulus of the cord, and
the apparent modulus of the cord-reinforced composite material
are presented. An example of a cord-composite material typical of
what can be found in steel-belted-radial tires is used to illustrate
the results. The conventional treatment of the mechanics of com-
posite materials such as the rule of mixtures or rule-of-averages
can be found in the book by Hull and Clyne �32�.

2 Formulation
Consider a cord-composite material that consists of parallel

cords of length 2Lc and radius Rc with an average spacing 2R
embedded in a matrix that is subjected to an average axial strain �
and rate of twist �. Figure 1 shows the cord-composite material
model representative volume element. Cylindrical coordinates are
denoted by r, �, and z, where the origin is at the center of the cord
and the z axis is parallel to the axis of the cord. The displacements
are ur, u�, and uz, the normal strains are �r, ��, and �z, the shear
strains are �r�, ��z, and �rz, the normal stresses are �r, ��, and �z,
the shear stresses are �r�, ��z, and �rz, the cord axial force is Fc,
the twisting moment is Mtc, and the interfacial shear stresses are
�r�i and �rzi.

Figure 2 shows an element of the cord, where dz is the length of
the element in the axial direction. Only the axial and circumfer-
ential components of the stresses acting on the elements are
shown. The equilibrium equations for the cord element yield

Fig. 1 Cord-composite material model
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dFc

dz
+ 2�Rc�rzi = 0 and

dMtc

dz
+ 2�Rc

2�r�i = 0 �1�

For the matrix, the equilibrium equations in cylindrical coordi-
nates �31� yield

��r

�r
+
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r

��r�

��
+

��rz
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+

�r − ��
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�r
+
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���z

��
+

��z

�z
+

�rz

r
+ fz = 0

Figure 3 shows an axially loaded cord, where Fc is the axial
force, Mtc is the twisting moment, R1 is the radius of the inner
wire, R2 is the radius of the outer wires, Rc is the outside radius of
the cord, m is the number of outer wires, and � is the helix angle
of the outer wires. Velinsky et al. �27� and Costello �28� showed
that Fc and Mtc may be expressed as

Fc

AcEc
= C1�c + C2Rc�c and

Mtc

EcRc
3 = C3�c + C4Rc�c �3�

where Ac=�N�Ri
2 is the metallic cross sectional area, N is the

total number of wires, Ec is the modulus of elasticity of the ma-
terial, �c is the axial strain, �c is the rate of twist, and C1, C2, C3,
and C4 are constants that can be determined analytically from the
cord geometry and Poisson’s ratio of the cord material �c.

The matrix is modeled as a linear-elastic material �31�. The
elastic modulus is denoted by Em, the Poisson ratio is denoted by
�m, and the shear modulus is denoted by Gm, where

Gm =
Em

2�1 + �m�
�4�

The matrix strain-stress relations are

�r =
1

Em
��r − 	m��� + �z��

�� =
1

Em
��� − 	m��r + �z��

�z =
1

Em
��z − 	m��r + ����
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�rz

Gm
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��z
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�5�

The strain-displacement relations in cylindrical coordinates are
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Since the cord-composite material model chosen is symmetric, all
derivatives with respect to � are zero.

The axial strains and the rates of twist of the cord and the
composite can be expressed as

�c =
duz�r = Rc�

dz
, � =

duz�r = R�
dz

�7�

�c =
1

Rc

du��r = Rc�
dz

, � =
1

R

du��r = R�
dz

where � is the axial strain and � is the rate of twist of the com-
posite.

It is assumed that load transfer occurs between the cords and
the matrix primarily through shear stresses at the cord/matrix in-
terface, and load transfer between the cords and the matrix due to
stresses acting at the cord/matrix interface on the ends of the cord
is neglected. Thus, the boundary conditions for the cord are Fc
=0 and Mtc=0 at z= 
Lc.

Fig. 2 An element of the cord

Fig. 3 An axially loaded cord
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3 Results
An approximate solution is achieved by neglecting small terms.

Equations �1�–�7� yield two coupled, second order, linear, nonho-
mogeneous, ordinary differential equations for the cord axial force
and twisting moment,

d2Fc

dz2 − a11Fc + a12Mtc = − f1

�8�
d2Mtc

dz2 + a21Fc − a22Mtc = − f2

where

a11 =
2�C4Gm

AcCEc ln� R

Rc
� , a12 =

2�C2Gm

CEcRc
3 ln� R

Rc
�

a21 =
4�C3GmRc

2

AcCEcRc�1 − �Rc

R
�2	 , a22 =

4�C1GmRc
2

CEcRc
4�1 − �Rc

R
�2	

f1 =
2�Gm

ln� R

Rc
��, f2 =

4�GmRc
2

1 − �Rc

R
�2�, C = C1C4 − C2C3

Equation �8� has the general solution

Fc = d1 cosh��1z� + d2 cosh��2z� + d3 sinh��1z� + d4 sinh��2z�

+ Fcp

�9�
Mtc = k1d1 cosh��1z� + k2d2 cosh��2z� + k1d3 sinh��1z�

+ k2d4 sinh��2z� + Mtcp

where

�1,2 =
a11 + a22 
 
�a11 + a22�2 − 4�a11a22 − a12a21�
2

k1 =
a11 − �1

2

a12
=

a21

a22 − �1
2 , k2 =

a11 − �2
2

a12
=

a21

a22 − �2
2

Fcp =
a22f1 + a12f2

a11a22 − a12a21
= AcEc�C1� + C2Rc��

Mtcp =
a21f1 + a11f2

a11a22 − a12a21
= EcRc

3�C3� + C4Rc��

Applying the boundary conditions Fc=0 and Mtc=0 at z= 
Lc
yields

d1 =
k2Fcp − Mtcp

�k1 − k2�cosh��1Lc�
, d2 = −

k1Fcp − Mtcp

�k1 − k2�cosh��2Lc�

d3 = 0, d4 = 0

Equations �1� and �9� yield

�rzi =
− 1

2�Rc
�d1�1 sinh��1z� + d2�2 sinh��2z��

�10�

�r�i =
− 1

2�Rc
2 �k1d1�1 sinh��1z� + k2d2�2 sinh��2z��

The average axial force and twisting moment in the cord are de-
fined as

�Fc�average =
1

2Lc
�

z=−Lc

Lc

Fcdz and �Mtc�average =
1

2Lc
�

z=−Lc

Lc

Mtcdz

�11�
Substituting Eq. �9� into Eq. �11� and evaluating the integrals
yield

�Fc�average

AcEc
= C1�1 −

1

Lc�k1 − k2�� tanh��1Lc�
�1

�a21

a22
− k2�

−
tanh��2Lc�

�2
�a21
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− k1�	
�

+ C2�1 −
1

Lc�k1 − k2�� tanh��1Lc�
�1

�a11

a12
− k2�

−
tanh��2Lc�

�2
�a11

a12
− k1�	
Rc� �12�

and

�Mtc�average

EcRc
3 = C3�1 −

1

Lc�k1 − k2�� k1 tanh��1Lc�
�1

�1 −
a22

a21
k2�

−
k2 tanh��2Lc�

�2
�1 −

a22

a21
k1�	
�

+ C4�1 −
1

Lc�k1 − k2�� k1 tanh��1Lc�
�1

�1 −
a12

a11
k2�

−
k2 tanh��2Lc�

�2
�1 −

a12

a11
k1�	
Rc�

In the mathematical limit as Lc→0, Eqs. �9� and �10� yield Fc
→0, Mtc→0, �rzi→0, and �r�i→0. In the mathematical limit as
Lc→�, Eq. �12� yields �Fc�average→Fcp and �Mtc�average→Mtcp.
Thus, shorter cords have smaller axial force and twisting moment
and shear stresses, while longer cords have higher force and twist-
ing moment and shear stresses. As the cord length approaches
infinity, away from the ends of the cord, the cord axial force and
twisting moment approach the axial force and twisting moment of
a cord subjected to the composite average axial strain and rate of
twist. These results are consistent with the proposed material
model.

The effective modulus of the cord is defined by the equation

�Ec�effective

Ec
=

�Fc�average

AcEc
�13�

For many applications of cord-composite materials, the twisting
of the composite will be constrained, and the rate of twist � of the
composite will be zero. In that case, the effective modulus of the
cord �Ec�effective can be expressed as

�Ec�effective

Ec
= C1�1 −

1

Lc�k1 − k2�� tanh��1Lc�
�1

�a21

a22
− k2�

−
tanh��2Lc�

�2
�a21

a22
− k1�	
 �14�

and the apparent modulus of the composite E can be expressed
using the rule-of-mixtures or rule-of-averages �32� as

E = Vc�Ec�effective + �1 − Vc�Em �15�
where

Vc =
Ac

�R2

is the cord volume fraction.
To illustrate the results, consider a steel-belted-radial tire,

where steel cords are embedded in a rubber matrix. Take the di-
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mensions and material properties of the cord, the matrix, and the
composite to be R1=0.150 mm, R2=0.140 mm, m=6, �
=81.4 deg, Rc=0.430 mm, Ac=0.440 mm2, Ec=200 GPa, �c
=0.25, C1=0.967, C2=0.0828, C3=0.187, C4=0.0723, Em
=10 MPa, �m=0.499, and Rm=4Rc. The composite is subjected to
�=0.001 and �=0. Figure 4 shows Fc / �AcEc� and �rzi /Ec versus
z / �Rcs�, Fig. 5 shows Mtc / �EcRc

3� and �r�i /Ec versus z / �Rcs�, and
Fig. 6 shows �Ec�effective /Ec versus s, where s=Lc /Rc is the cord
aspect ratio.

4 Discussion
Figure 4 shows the cord axial force and axial shear stress at the

cord-matrix interface versus position along the axis of the cord.
The cord axial force is zero at the ends of the cord. The axial shear
stress and the rate of change of the cord axial force are greatest
near the ends of the cord and decrease to zero at the center of the
cord. The maximum cord axial force occurs at the center of the
cord and is significantly greater for long cords than for short ones,
and the maximum axial shear stress at the cord/matrix interface
occurs at the ends of the cord and is greater for long cords than it
is for short ones. As the length of the cord increases, the value of
the cord axial force approaches the value of the axial force of a
cord subjected to the composite average axial strain and rate of
twist. The results presented in Fig. 4 are consistent with the hy-
pothesis that axial load is transferred from the matrix to the cords
through shear stresses at the cord-matrix interface.

Figure 5 shows the cord axial twisting moment and circumfer-
ential shear stresses at the cord-matrix interface versus position
along the cord and is similar in appearance to Fig. 4. The cord
axial twisting moment is zero at the ends of the cord. The circum-
ferential shear stress and the rate of change of the cord axial
twisting moment are greatest near the ends of the cord and de-
crease to zero at the center of the cord. The maximum cord axial
twisting moment occurs at the center of the cord and is signifi-
cantly greater for long cords than for short ones, and the circum-
ferential shear stress at the cord/matrix interface occurs at the ends
of the cord and is greater for long cords than it is for short ones.
As the length of the cord increases, the value of the cord axial
twisting moment approaches the value of the twisting moment of
a cord subjected to the composite average axial strain and rate of
twist. The results presented in Fig. 5 are consistent with the hy-
pothesis that axial load is transferred from the matrix to the cords
through shear stresses at the cord-matrix interface. It is concluded
from Figs. 4 and 5 that greater load, both axial force and twisting
moment, is transferred to long cords and lesser load is transferred
to short ones. Shear stresses at the cord/matrix interface, both
axial and circumferential, are greatest at the ends of the cord and
diminish to zero at the center of the cord and are greater for long
cords than they are for short ones. It is noted that the maximum
value of the circumferential shear stress at the cord-matrix inter-
face �r�i is approximately one order of magnitude less than the
maximum value of the axial shear stress at the cord-matrix inter-
face �rzi.

Figure 6 shows the cord effective modulus versus the cord
length. For short cords, the effective modulus is small. As the cord
length increases, the effective cord modulus increases. For long
cords, the effective cord modulus approaches the value of the
effective cord modulus for a cord where the rotation of the ends is
prevented. We conclude that the effective modulus of long cords
is much greater than the effective modulus of short ones due to
greater load transfer to long cords and lesser load transfer to short
ones—greater shear stresses act over greater lengths for long
cords, and lesser shear stresses act over lesser lengths for short
cords. Finally, the effective axial modulus of the cords may be
significantly less than the modulus of a cord where rotation of the
ends is prevented.

It is noted that the terms that were neglected in Eqs. �1�–�7� to
arrive at the differential equations given by Eq. �8� and the solu-

tion given by Eqs. �9� and �10� may not be small near the ends of
the cords where z / �Rcs� approaches 
1. Thus, Eqs. �9� and �10�
and Figs. 4 and 5 may not be accurate for values of z / �Rcs� ap-
proaching 
1. However, the solution given for the cord axial
force and twisting moment given by Eq. �9� and the shear stresses
at the cord-matrix interface given by Eq. �10� are believed to be
accurate to one or two cord diameters from the end of the cord as
the end effects decay exponentially. Also, the average values of
the cord axial force and twisting moment given by Eq. �12�, the

Fig. 4 Fc / „AcEc… versus z / „Rcs…

Fig. 5 Mtc / „EcRc
3
… versus z / „Rcs…

Fig. 6 „Ec…effective/Ec versus s
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cord effective modulus given by Eq. �14�, and the apparent modu-
lus of the composite given by Eq. �15� are believed to be accurate
since the neglected terms will contribute little to the integrals
defined by Eq. �11�. The apparent modulus of the composite is
found by substituting the value for the effective modulus of the
cord given by Eq. �14� into the rule-of-averages or rule-of-
mixtures equation given by Eq. �15�.

5 Summary and Conclusions
The results of an elasticity approach to the mechanics of load

transfer in cord-reinforced composite materials were presented. A
cord-composite material consisting of finite cords embedded in an
elastic matrix and subjected to axial loading was considered. The
extension-twist coupling of the cords was taken into account. So-
lutions for the axial force and twisting moment in the cord, the
shear stresses at the cord-matrix interface in the axial and circum-
ferential directions, the effective axial modulus of the cord, and
the apparent modulus of the cord-reinforced composite material
were presented. An example of a cord-composite material typical
of what can be found in steel-belted-radial tires was used to illus-
trate the results, where the modulus of the material of the steel
cords is much higher than the modulus of the rubber matrix.

It was found that when a cord-reinforced composite material
consisting of finite cords embedded in an elastic matrix is axially
loaded, significant shear stresses occur near the ends of the cords
at the cord/matrix interface in the axial and circumferential direc-
tions. While the shear stresses at the ends of long cords are greater
than those for short cords, greater load is transferred from the
matrix to long cords than is transferred from the matrix to short
ones. For short cords, the effective axial modulus of the cords may
be significantly less than the modulus of the cord material. With
an effective modulus of the cord significantly less than the modu-
lus of the cord material, the apparent modulus of the cord-
composite material will be significantly less than that predicted by
a conventional application of a rule-of-mixtures approach.
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1 Introduction
Ceramic honeycombs are used in catalytic converters and diesel

particulate filters for automobiles, in filters of continuous casting
plant, in plates for gas burners, and in medical prosthetic implants.
Glass honeycombs have been used as lightweight supports for
space mirrors as, for example, in the Hubble telescope. In most of
these applications, the ceramic lattices are chosen for their multi-
functional properties, such as high thermal shock resistance, high
chemical stability, and high stiffness. They are loaded in a sand-
wich panel configuration with stiff and strong face sheets. The
flaw sensitivity of the tensile strength of these honeycombs is of
concern and is the motivation for the present study: We shall
explore the tensile fracture strength of a sandwich panel, with a
center-cracked core made from an elastic-brittle diamond-celled
honeycomb. The crack is on the midplane, with loading normal to
the face of the sandwich panel, see Fig. 1. The strength is deter-
mined both by finite element simulations and by simple analytical
models. It will be shown that the tensile strength is dictated by the
Mode I fracture toughness of the honeycomb for a limited regime
of sandwich panel geometries. Accordingly, we begin by review-
ing the fracture toughness of brittle honeycombs.

1.1 Fracture Toughness of Brittle Honeycombs. The frac-
ture toughness of brittle hexagonal honeycombs has been modeled
by relating the crack tip elastic fields of an equivalent continuum
to the stress state within the lattice �1,2�. It was assumed that the
macroscopic fracture toughness is set by local tensile failure when
the maximum stress in any strut of the lattice attains the fracture
strength � f of the cell-wall material. It is shown that the fracture
toughness of the hexagonal honeycomb scales linearly with � f,
quadratically with relative density and with the square root of cell
size �as demanded by dimensional analysis�.

Numerical and analytical predictions for the fracture toughness
of several honeycomb topologies are now available. Fleck and
Qiu �3� have determined the fracture behavior of isotropic lattices

of deterministic fracture strength: hexagonal, triangular, and
Kagome. Orthotropic lattices with square cells have also been
examined �4�. An analytical model of the fracture toughness of the
diamond-celled honeycomb shown in Fig. 2 has been developed
and validated by finite element calculations �5�. The diamond-
celled honeycomb is remarkably tough: Its Mode I fracture tough-
ness scales as

KIC = �� f t̄�� �1�

where t̄ is the ratio of cell-wall thickness t to cell size �, and the
numerical constant is �=0.44 �4�. Limited experimental studies of
the fracture toughness of honeycombs have been found in the
literature. Measurements on notched three point bend specimens
of cordierite honeycombs have been carried out by Huang and
Gibson �6�. Their data suggest that Eq. �1� gives an adequate
description of the fracture toughness of the diamond-celled
honeycomb.

Microstructural imperfections, such as wavy struts and dis-
placed joints, are expected to have a knockdown effect on the
fracture properties of elastic-brittle honeycombs. The sensitivity
of fracture toughness to imperfections in the form of displaced
joints has been explored by Romijn and Fleck �4�. They found that
the nodal connectivity of the lattice dictates the response. A con-
nectivity of four struts per joint, as in the diamond-celled lattice,
is the transition case: The behavior of these structures can be
bending-dominated or stretching-dominated depending on the
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Contributed by the Applied Mechanics Division of ASME for publication in the

JOURNAL OF APPLIED MECHANICS. Manuscript received July 30, 2007; final manuscript
received October 23, 2007; published online July 21, 2009. Review conducted by
Robert M. McMeeking.

Fig. 1 Center-cracked sandwich plate made from a diamond-
celled honeycomb and subjected to uniaxial tension
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level of imperfection. Consequently, the fracture toughness of the
diamond-celled topology is imperfection sensitive.

Brittle solids exhibit a scatter of failure strengths: Variable flaw
sizes and a random orientation within the brittle cell walls lead to
variations in the tensile strength of the solid material � f. Huang
and Gibson �6� and later Huang and Chou �7� have included sta-
tistical effects in the fracture toughness of hexagonal and square
honeycombs by assuming that the strength of the cell walls fol-
lows a Weibull distribution. They concluded that the fracture
toughness KIC increases with cell size if the Weibull modulus m is
greater than 4, is insensitive to cell size if m equals 4, and it
decreases with cell size if m is less than 4. We shall reassess this
result for the diamond-celled honeycomb.

1.2 Statement of the Problem. In the present study, we in-
vestigate the tensile fracture response of a center-cracked sand-
wich panel made from a diamond-celled honeycomb �Fig. 1�. This
is a common test geometry and is representative of practical ap-
plications. The sandwich panel is of width 2W and height 2H, and
contains a crack of length 2a. Fixed grip load conditions are ap-
plied by prescribing remote displacements, as shown in Fig. 1.

The diamond-celled lattice, sketched in Fig. 2, is characterized
by its cell size �, wall thickness t, and core angle �. However,
only orthogonal honeycombs of �=45 deg are considered in this
study. The cell-wall material is linear elastic to fracture. It has
Young’s modulus Es, Poisson’s ratio �s, and a deterministic tensile
fracture strength � f. Later in our study, we shall modify this by
considering a Weibull distribution of strength. The relative density
of the diamond-celled honeycomb is defined by the density of the
lattice divided by that of the of the cell-wall material, and is
related to t̄� t /� by

�̄ = t̄�2 − t̄� �2�

Classical beam theory suffices to analyze the stress state within
the sandwich core in the absence of a crack. Straightforward
analysis reveals that the sandwich panel has an out-of-plane un-
notched tensile strength �u, which scales with the tensile fracture
strength of the solid material � f and with t̄ according to

�u =
t̄

1 + 3t̄
� f �3�

This expression takes into account both bending and stretching of
the cell walls. Upon neglecting the bending contribution, it re-
duces to

�u = t̄� f �4�

The approximation �4� is acceptable at low relative densities: At
t̄=0.05, it leads to an error of 15% in Eq. �3�. Henceforth, we shall
assume that the unnotched strength is given by Eq. �4�.

Now introduce a macroscopic crack into the honeycomb. We
write �� as the remote gross stress required to initiate crack
growth under uniaxial loading. Then �� /� f depends on the four

nondimensional groups t̄, a /�, H /�, and H /W. In the current
study, we shall limit attention to practical sandwich geometries for
which H /W is small.

1.3 Scope of the Study. The structure of this paper is as
follows. First, simple analytical models are used to obtain the
deterministic fracture strength of the center-cracked panels. These
predictions are used to construct a fracture map with axes given
by the sandwich beam geometry. The map is validated by selected
finite element �FE� simulations. The statistics of brittle fracture
are then considered, and the effect of a Weibull distribution of
strength on the regimes of dominance of the fracture map is ex-
plored.

2 Analytic Description
Consider the center-cracked sandwich panel shown in Fig. 1.

The failure strength for any given geometry is determined from a
series of simple analytical models. We shall show that the effect of
geometry on strength is adequately captured by the two nondi-
mensional groups � /a and � / �t̄H�. These groups are used to define
the axes of a failure mechanism map, and each analytical model of
failure has a regime of dominance on the map.

We argue that there exists a Regime I of specimen geometries
for which the stresses are uniform throughout the lattice. The
stress concentration at the crack tip is negligible and the net
strength of the cracked panel equals the unnotched strength: The
panel is damage tolerant. However, there exist other geometries
for which a K-field develops around the crack tip, on a scale larger
than the cell size. We call this Regime II if the crack is long
compared to the height of the sandwich panel, and Regime III if it
is short. A detailed analysis for each regime is now given.

2.1 Regime I. A schematic representation of the stress state
within the sandwich core for Regime I is shown in Fig. 3�a�.
Elastic shear regions partition zones of uniform stress state within
the sandwich panel: equibiaxial stress, uniaxial stress, and zero
stress, see Fig. 3�a�.

A simple physical model can be developed for the macroscopic
strength �8�. It is assumed that only bars that connect one face
sheet to the other carry load. Bars that end on the crack faces or
on the side edges of the sandwich panel are unloaded. The remain-
ing bars connect both face sheets and are subjected to an axial
stress on the bar cross section of

�a =
u2

2H
Es �5�

The number n of load carrying bars is given by

n =
4�W − H − a�

��2
�6�

Equilibrium in the vertical x2-direction of Fig. 3�a� gives the re-
lation between the macroscopic gross stress �� and the local ten-
sile stress in the bars �a as

�� = n
t�2

4W
�a �7�

Failure occurs when the axial stress in the bars, �a, attains the
tensile strength of the solid material, � f. The gross-section
strength of the sandwich panel follows as

�� = �1 −
H

W
−

a

W
� t̄� f �8�

The net-section strength is defined by �n=�� / �1−a /W� and in
nondimensional form it reads

Fig. 2 Crack morphology
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�̄ �
�n

�u
=

��

�1 −
a

W
��u

�9�

Now limit attention to the case H /W�1. Substitution of Eq. �8�
into Eq. �9� gives �̄=1 since �u= t̄� f according to expression �4�.
We emphasize that the nondimensional parameter �̄ compares the
net-section strength of the cracked sandwich panel to the un-
notched strength. It is therefore a measure of the damage tolerance
of the sandwich panel.

2.2 Regime II. Assume that the crack is sufficiently long
compared to the height 2H of the sandwich panel that the core
behaves as an orthotropic elastic strip with a semi-infinite crack,
see Fig. 3�b�. Upstream of the crack tip, a biaxial state of stress
prevails while downstream the core is unloaded. In the intermedi-
ate zone, a crack tip K-field exists on a length scale larger than
that of the cell size. The Mode I stress intensity factor KI at the
crack tip is given by the steady state solution as follows.

First, calculate the energy release rate GI by advancing the
crack tip a virtual increment �a. The energy released GI�a equals
the difference in stored elastic energy within a strip of width �a
and height 2H upstream and downstream of the crack tip. Treat
the lattice as an effective medium, subjected to a uniform stress
state far ahead of the crack tip and far behind the crack tip. Ma-
terial elements downstream of the crack tip are unloaded. Up-

stream, material elements are subjected to the macroscopic strain
state 	11=	12=0 and 	22=u2 /H. The macroscopic stress compo-
nent �22 is �4�

�22 =
1

2
Es�t̄ + t̄3�	22 �10�

with �12=0. Consequently, an energy balance reads

GI�a =
1

2
�22	222H�a =

2H�22
2

Es�t̄ + t̄3�
�a �11�

It remains to determine the stress intensity factor KI in terms of
GI.

The energy release rate GI and the stress intensity factor KI in
an orthotropic material in plane stress are related through the ex-
pression

GI = CIKI
2 �12�

where the elastic coefficient CI is a function of the elastic moduli,
see, for example, Tada et al. �9�. For the orthotropic honeycomb
under consideration, CI is given by

CI =
�t̄2 + 1

�2

1

t̄2Es

�13�

The stress intensity factor KI follows as

KI =
23/4t̄�22

�H

�t̄ + t̄3�1/2�t̄2 + 1�1/4
�14�

We modify this expression to account for the case of a finite crack.
Since �22 is the net-section stress, the remote gross stress �� reads

�� = �1 − a/W��22, �15�

Also assume that t̄ is much less than unity. Then Eqs. �14� and
�15� simplify to

KI = FI�
��H �16�

where the calibration function FI is

FI =
23/4�t̄

�1 − a/W�
�17�

Recall that Mode I fracture toughness KIC of the diamond-celled
lattice has already been given by Eq. �1� in terms of a single
numerical constant �=0.44, as calibrated by FE simulations �4�.
Failure occurs when KI=KIC. Consequently, the gross-section
strength of the sandwich panel is

�� =
KIC

FI
�H

= 2−3/4��t̄ � �

H
�1/2�1 −

a

W
�� f �18�

and the nondimensional net-section strength reads

�̄ �
��

�1 −
a

W
��u

= 2−3/4�� �

Ht̄
�1/2

�19�

We mention in passing that the calibration factor FI derived here
is in excellent agreement with that obtained by Georgiadis and
Papadopoulos �10� using Fourier transforms and the Wiener–Hopf
technique. Additional FE simulations have been performed for a
cracked strip made from an orthotropic continuum. They confirm
the accuracy of Eq. �19� for finite a /W, and are omitted here for
the sake of brevity.

2.3 Regime III. Regime III is schematically depicted in Fig.
3�c�. Now, the crack is much smaller than the height and width of
the sandwich panel. The K-calibration for an orthotropic panel
containing a short central crack of length 2a is approximately

Fig. 3 „a… Regime I: uniform stress with practically no stress
concentration at the crack tip. „b… Regime II: K-field exists.
Strength is independent of crack length. „c… Regime III: K-field
exists. Strength scales with crack length as a−1/2. In all three
regimes, the effective stress far ahead of the crack tip is equibi-
axial, and of magnitude t̄�a upon neglecting the contribution
from beam bending.
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KI =
���
a

�1 −
a

W
� �20�

A more precise calibration can be found in the literature �11�.
However, the approximate relation �20� is adequate for our pur-
poses and it leads to a major simplification of subsequent algebra.

Failure occurs when the stress intensity factor KI reaches the
critical value, KIC. The gross-section strength of the sandwich
panel is given by

�� =
�1 −

a

W
�KIC

�
a
=

�

�

t̄��

a
�1/2�1 −

a

W
�� f �21�

and the normalized net-section strength is

�̄ �
��

�1 −
a

W
��u

=
�

�

��

a
�1/2

�22�

2.4 Construction of the Fracture Map. The above three
analytical models can be used to construct a fracture map, with
suitably chosen axes in terms of the sandwich geometry. The non-
dimensional net-section strength �̄ equals unity in Regime I, de-
pends on � / t̄H in Regime II, and depends on � /a in Regime III.
Consequently, we construct a fracture map with axes �� /a ,� / t̄H�,
as shown in Fig. 4. The boundaries between regimes are obtained
by equating the expressions for the strength within each regime.
The boundary between Regimes I and II is given by � / t̄H=14.6
upon taking �̄=1 in Eq. �19�. Likewise, the boundary between
Regimes II and III is obtained by equating �̄ from Eq. �19� with �̄

from Eq. �22�, to give � / t̄H=0.9� /a. A physical constraint on the
minimum crack length is also imposed on the map: The minimum
crack length in the lattice is a /�=�2. It is straightforward to add
contours of nondimensional strength �̄ to the map, upon making
use of �̄=1 in Regime I, and relations �19� and �22� in Regimes II
and III, respectively. We emphasize that the fracture map is uni-

versal for all relative densities and for all geometries of sandwich
panel, provided W /H is sufficiently large. It remains to perform a
series of FE simulations to validate the map.

3 Numerical Calculations
Selected FE simulations have been carried out to determine the

gross-section fracture strength �� of centrally cracked sandwich
panels made from an elastic-brittle, diamond-celled honeycomb. It
is assumed that the honeycomb fails when the maximum tensile
principal stress anywhere in the lattice attains a critical value � f.

The linear elastic calculations were performed using the com-
mercial FE code ABAQUS �version 6.5-3�. Each strut in the lattice
was modeled as a two-noded Euler–Bernoulli beam element �type
B23 in ABAQUS notation�: This element uses cubic interpolation
functions and allows for both stretching and bending deformations
but neglects shear deformation.

The symmetries of the geometry and loading were such that a
FE mesh was generated for one-quarter of the sandwich panel.
The crack in the lattice was defined by splitting the joints along
the cracking plane while keeping intact the struts on each face of
the crack �Fig. 2�. The face sheets were not explicitly modeled in
the FE simulations. Rather, all lattice joints attached to the face
sheets were subjected to the same prescribed vertical displace-
ment, with zero transverse displacement and zero rotation.

The FE mesh of the sandwich core comprised 1400 cells in the
x1 direction by 70 cells in the x2 direction. Throughout this nu-
merical study, two aspect ratios were held constant: H /�=70�2
and H /W=1 /20. We investigated the sensitivity of the fracture
strength of the sandwich panel to crack length a /� and to relative
density as parametrized by t̄� t /�.

3.1 Verification of the Regimes of Behavior. A series of FE
calculations has been performed for selected values of t̄ in the
range 5�10−5 to 0.25 and a /� between �2 and 1050�2. The
results are given in Fig. 5 in the form of a plot of �̄ versus a /�,
together with the analytic prediction �̄=1 for all t̄ in Regime I, the
prediction �19� for selected values of t̄ in Regime II, and the
prediction �22� for all in t̄ Regime III. Good agreement between
the analytical formulas and numerical predictions is noted for all
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three regimes. For t̄ below a transition value of �2� /2�2H=6.9
�10−4, the response lies within Regime I: The FE simulations
confirm that �̄	1. For t̄ above this transition value, the strength
of the sandwich panel is toughness controlled and �̄ is below the
unnotched value. In Regime II, the strength of the panel is inde-
pendent of crack length and scales with relative density according
to �̄� �t̄H /��−1/2, recall Eq. �19�. In Regime III, the nondimen-
sional strength of the panel is independent of relative density and
scales with crack length as �̄� �a /��−1/2.

Additional insight is obtained by plotting in Fig. 6 the normal-
ized net-section strength �̄ as a function of t̄; this is done by cross
plotting the seven data points of Fig. 5 at fixed a /�=3�2. Three
additional simulations were run and added to Fig. 6 in order to
present a more complete comparison between FE results and ana-
lytical estimates. At small t̄, the response lies within Regime I: No
stress concentration exists and the unnotched strength is main-
tained, �̄=1. With increasing t̄, the response switches to Regime II
and �̄ scales as t̄−1/2 in accordance with Eq. �19�. At large t̄,
Regime III exists such that �̄ is insensitive to t̄, as stated in Eq.
�22�. It is remarkable that the simple estimates of Sec. 2, based on
linear elastic fracture mechanics for a continuum, capture the re-
sponse in Regimes II and III despite the fact that the lattices of
Fig. 6 contain only a few broken cells.

3.2 Normal Traction Directly Ahead of the Crack Tip.
Consider the forces in the joints of the lattice directly ahead of the
crack tip. These forces are used to construct a traction distribution
on the crack plane directly ahead of the crack tip, in order to make
comparisons with the stress state in a cracked continuum. This
traction distribution has been obtained for the geometries P1, P2,
and P3, as defined in Fig. 4. These geometries are taken to be
representative of the response for each of the three regimes.

�i� The traction distribution for geometry P1 �representative
of Regime I� is uniform at �22	��, see Fig. 7�a�. This
implies that no K-field exists.

�ii� The traction �22�r� for geometry P2 of Regime II is com-
pared to the asymptotic crack tip field �22=KI /�2
r in
Fig. 7�a�, where r is the distance ahead of the crack tip.
Note that Eq. �16� is used for KI. It is clear that the traction
in the discrete lattice is consistent with the K-field of a
continuum.

�iii� Finally, consider geometry P3 of Regime III. The traction
within the discrete lattice is plotted in Fig. 7�b� along with
the Savin �12� solution for an infinite orthotropic panel
containing a center crack. It is clear that the traction ahead
of the crack tip in the lattice is adequately represented by
the continuum solution. The agreement is remarkably
close given the fact that the crack in the lattice is short,
a /�=3�2.

The comparisons made in Fig. 7 support the applicability of
linear elastic fracture mechanics in Regimes II and III: KIC serves
as a useful fracture parameter to describe the local conditions near
the crack tip of the lattice.

4 Statistics of Brittle Failure
Brittle solids, such as engineering ceramics, contain a random

distribution of flaws of stochastic length. Consequently, the solid
cell walls of a brittle honeycomb exhibit a statistical distribution
of tensile fracture strength � f. Weibull statistics are commonly
used to model this scatter in strength: the survival probability Ps
of a brittle solid of volume V subjected to a maximum principal
tensile stress �1 is given by

10-5 10-4 10-3 10-2 10-1 100

10-1

100

t

σ

REGIME REGIME REGIME
I II III

E q. (19)

E q. (22)

Fig. 6 Net strength as a function of relative density for a sand-
wich panel made from a lattice, which contains a central crack
of length a /�=3�2. The panel has aspect ratios W /H=20 and
H /�=70�2.
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Fig. 7 Normal tractions directly ahead of the crack tip. The
geometries are specified by P1: t̄=5Ã10−5, a /�=3�2; P2: t̄=0.15,
a /�=350�2, and P3: t̄=0.15, a /�=3�2.

Journal of Applied Mechanics NOVEMBER 2009, Vol. 76 / 061003-5

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Ps��1� = exp
−�
V

��1

�0
�mdV

V0
� �23�

where m is the Weibull modulus and �0 is a reference fracture
strength for a reference volume V0. The magnitude of the Weibull
modulus is a measure of the variability in strength: The lower the
value of m, the greater the variability in strength.

We proceed to include the statistical component of cell-wall
strength in our analysis of the cracked sandwich panel. Strength-
controlled failure �Regime I� and toughness-controlled failure
�Regimes II and III� are treated in turn.

4.1 Strength-Controlled Regime I. In Regime I, the deter-
ministic net-section strength of the cracked panel is adequately
predicted by the unnotched strength �u= t̄� f. It is straightforward
to modify this analysis for a statistical distribution of strength.
Assume that the cell walls are uniaxially loaded. Then, the maxi-
mum principal tensile stress �1 can be written in terms of the
remote applied net-section stress �n as �1=�n / t̄. The Weibull dis-
tribution �23� now takes the form

Ps��n� = exp
− � �n

t̄�0
�m V

V0
� �24�

The average net-section strength ��n�mean immediately follows as

��n�mean =�
0

�

Ps��n�d�n = �0t̄�V0

V
�1/m


�m + 1

m
� �25�

where 
�1+1 /m� is the gamma function and V=4H�W−a��̄ is the
total volume of cell-wall material per unit depth.

4.2 Statistics of Fracture Toughness. So far, we have used a
deterministic value of fracture toughness; however, statistical
variations in the strength of the solid cell walls lead to variations
in the fracture toughness of the lattice. We proceed to use Weibull
theory to predict the variability in fracture toughness in terms of
m, �0, and V0.

4.2.1 Weibull Analysis for a Crack Tip Field. Consider the
problem of a diamond-celled lattice containing a long crack, as
sketched in Fig. 8. The polar coordinates �r ,�� are centered on the
crack tip and are defined in the usual manner, see Fig. 8. We
subject the outer boundary of the lattice to the displacement field
u associated with the macroscopic crack tip K-field for an ortho-
tropic elastic solid �13�.

Write the maximum principal tensile stress �1 within the cell
walls of the lattice in the form

�1 =
KI

t̄��
g�r/�,�, t̄� �26�

where KI is Mode I stress intensity factor and the function g gives
the dependence on position within the lattice and on the bar stub-
biness t̄.

According to Weibull theory, the probability of survival of the
lattice subjected to a stress intensity KI is found by substituting
Eq. �26� into Eq. �23�:

Ps�KI� = exp
−�
V
� KIg

�0t̄��
�mdV

V0
�

= exp
− � KI

�0t̄��
�m�

V

gmdV

V0
� �27�

The average fracture toughness of the lattice follows as

�KIC�mean =�
0

�

Ps�KI�dKI = K̄�0t̄�� �28�

where

K̄ �
�KIC�mean

�0t̄��
= 
�m + 1

m
�
�

V

gmdV

V0
�−1/m

�29�

4.2.2 Finite Element Simulations. We shall now evaluate K̄
from FE simulations. A square mesh of the diamond-celled lattice
was created using ABAQUS �version 6.5-3�. Each strut of the lattice
was modeled as an Euler–Bernoulli beam element. The square
mesh was of side 600 unit cells and contained a traction-free edge
crack along the negative x1-axis �Fig. 8�. Loading was applied by
imposing the displacement field corresponding to the K-field on
the boundary of the mesh �13�. A mesh convergence study based
on the maximum local tensile stress in the lattice revealed that the
mesh suffices for the present investigation.

K̄ is calculated as follows. The maximum principal tensile
stress �1 within the cell walls of the lattice is determined from the
FE simulations. These stresses are used to obtain the function g as
defined in Eq. �26�. Note that only the maximum principal tensile
stress �1 enters the calculation. Figure 9 shows a typical strut in
the lattice with the zone of tensile stress. Introduce a local Carte-
sian reference frame �x ,y� for each strut such that x is the distance
along the strut and y is the distance from the neutral section. The
stress distribution �1�x ,y�=F / t+12My / t3 is obtained from the
bending moment along the strut M�x�=M1+ �M2−M1�x /� and the
axial force F. By setting �1�x ,y�=0, we locate the position of the
neutral axis as a function of the distance x along the beam,
yNA�x�=−Ft2 /12M�x�. The integral within expression �29� then
reads

�
V

gm�r/�,�, t̄�
rdrd�

V0
= � �2

V0
�� t̄��

KI
�m�

V

�1
m��,�, t̄��d�d�

�30�

where �=r /� is used as a dummy variable. This integral is calcu-
lated over a square region of side 2R centered at the crack tip �Fig.
8�. As the size of the square region increases, the volume integral

2x

1x

θ
r

2R

2R

ulattice

Fig. 8 FE model used to assess the fracture toughness of the
lattice
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y

x
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1 0σ >
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S

Fig. 9 Maximum principal stress distribution for a typical strut
in the lattice
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in Eq. �30� converges to a constant value. The higher the Weibull
modulus m, the faster the convergence is achieved.

The dependence of K̄��KIC�mean /�0t̄�� on Weibull modulus is
plotted in Fig. 10 for the two values of cell-wall stubbiness, t̄
=0.15 and t̄=0.01, with the arbitrary volume V0 taken to be V0
=�2. The plots display a peak value of fracture toughness for m
about equal to 6. A large Weibull modulus m implies small varia-
tions in cell-wall strength, and deterministic fracture toughness,

K̄=�=0.44. However, at low m, the effect of a stochastic strength

is significant. There exists a limit m=4 below which K̄ drops to
zero. A scaling argument can be used to explain this. Conventional
linear elastic fracture mechanics suggests that the nondimensional
function g scales with distance r from the crack tip as g�r−1/2.
Therefore, the integral within Eq. �29� has the following scaling:

�
V

gmdV ��
V

r−m/2rd�dr ��
�

�

r2−m/2dr 	
2

4 − m
�r4−m/2�r=�

r=�

�31�

where the lower limit of integration � is on the order of the cell
size of the lattice �. Note that this integral has a finite value for
m�4; however, for m�4 the integral is unbounded at the outer

limit and K̄ equals zero. We conclude from Eq. �28� that the frac-
ture toughness of the lattice tends to zero for m�4. The physical
interpretation is the following: The variability in strength is suffi-
ciently great for m�4 that struts remote from the crack tip fail
and the effective “stressed volume” is unbounded.

4.2.3 Analytical Estimate of the Mean Fracture Toughness.
For large values of Weibull modulus m, failure always occurs near
the crack tip. An estimate for the mean fracture toughness is found
by considering only the critical strut directly ahead of the crack tip
�Fig. 2�. Assume that this critical strut deforms as a built-in beam,
as sketched in Fig. 3�a�. Ignore the tensile stress caused by axial
and shear forces so that only the tensile stress due to bending is
taken into account. The survival probability is given in terms of
the maximum local bending stress in the built-in beam �A by �14�

Ps = exp
−
1

2�m + 1�2� V

V0
���A

�0
�m� �32�

Here, the volume V per unit depth is equal to 2�t since only two
struts are critical: the one containing the fracture site A, as shown
in Fig. 2, and its mirror image about the cracking plane. Numeri-

cal investigations �4� have revealed that the maximum local bend-
ing stress �A in the beam reads �A=KI /0.44t̄��. Substitution of
this value into Eq. �32� provides

K̄ �
�KIC�mean

�0t̄��
= 
�m + 1

m
�
0.44m�1 + m�2�V0

�2 �1

t̄
�1/m

�33�

Equation �33� is plotted in Fig. 10 as a dotted line for the two
values of t̄ considered in the numerical calculation of the previous
section. As expected, the estimate is valid only for large m. For
example, for m�10, the error is less than 4%. However, the ana-
lytical estimate considerably deviates from the numerical calcula-

tion of K̄ as the Weibull modulus is decreased.

4.3 Implications of Weibull Statistics on the Fracture
Map. The variability in cell-wall strength leads to a variability in
strength of the cracked sandwich panel in Regime I of the fracture
map, recall Eq. �8�. Likewise, the variability in fracture toughness
leads to a variability in strength of the cracked sandwich panel,
recall Eqs. �18� and �21� for Regimes II and III, respectively.

The implications of cell-wall strength variability on the fracture
map are now examined. We make use of expressions �25� and �33�
in order to derive analytical estimates for the boundaries between
regimes.

First, consider the boundary between Regimes I and II. Upon
equating the mean strength �25� in Regime I with the mean
strength in Regime II, as specified by Eqs. �18� and �33�, we
obtain

�

Ht̄
=

2�2

�2 
 1

2�1 + m�2� �2

2HW
��2/m

�34�

Second, the boundary between Regimes I and III is obtained via
Eqs. �25�, �21�, and �33�, giving

�

a
=




�2
 1

2�1 + m�2� �2

2HW
��2/m

�35�

Third, the boundary between Regimes II and III is obtained by
equating the strengths as specified by Eqs. �18� and �21�; Note that
this boundary is insensitive to the value of m.

The effect m on the boundaries of the fracture map is shown in
Fig. 11. Boundaries are plotted for selected values of m=10 and
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m=6 together with the deterministic result m=�. It is clear that as
the Weibull modulus decreases the regimes of fracture toughness
control shrink in favor of the strength-governed Regime I.

Boundaries are given in Fig. 11 for two values of HW /�2. One
choice corresponds to the geometry considered in the FE analysis
of the present study such that W /H=20 and H /�=70�2, giving
HW /�2=196�103. A second choice assumes a much larger struc-
ture such that W /H=20 and H /�=700�2, giving HW /�2=196
�105. It is clear from Fig. 11 that for finite m Regime I expands
with increasing volume of panel, for a given cell size �.

Engineering ceramics have a wide range of m value from 3 to
20 depending on the processing route. For example, cordierite in
catalytic converters has approximately m=6 �6�. Thus, it is nec-
essary to include statistical effects on the strength of the sandwich
panel.

5 Concluding Remarks
In this study, it is shown that the fracture strength of a center-

cracked sandwich panel made from a brittle diamond-celled hon-
eycomb depends on the relative density of the lattice, the crack
size, and the geometric dimensions of the panel. The FE method
has been used to investigate the damage tolerance of the structure.
A fracture map has been constructed with axes �� /a ,� / t̄H� given
by the sandwich geometry. Three regimes of behavior have been
observed. Simple analytical models of each regime are able to
capture the mechanical response of the sandwich panel.

Statistical variations in the cell-wall strength have been quanti-
fied by assuming that it follows a Weibull distribution. The effect
of specimen geometry and Weibull modulus on the fracture map
has been explored. As expected, a large sandwich panel is more
likely to be strength controlled, for a given cell size of the hon-
eycomb. It is also found that the domain of toughness-controlled
fracture shrinks as the Weibull modulus m is decreased. For m
�4, the fracture toughness of the honeycomb falls to zero and
failure is strength governed.

The results presented above give the fracture toughness of the
lattice KIC in terms of the tensile strength � f of the cell-wall
material. However, � f derives from the fracture toughness Ks of
the cell wall and the intrinsic flaw size c within the cell walls

� f 	
Ks

�
c
�36�

Substition of Eq. �36� into Eq. �1� gives

KIC

Ks
= 0.23t̄��

c
�1/2

�37�

This alternative presentation of the fracture toughness KIC sug-
gests that improved processing techniques, which reduce c, will
lead to an enhanced toughness of the lattice.

The current study is also of relevance to the fatigue strength of
metallic lattices. Following Gibson and Ashby �2� and Huang and
Lin �15�, we argue that fatigue failure of the cracked lattice is due
to the cyclic failure of the most heavily loaded strut. Now limit
attention to the fatigue limit of the lattice. At infinite fatigue life,
this critical strut is subjected to local stress of amplitude equal to

the endurance limit �e of the solid. The map shown in Fig. 4 can
be reinterpreted as a fatigue fracture map for infinite life once we
rewrite �̄ as amplitude of net-section fatigue loading normalized
by �e. Also, the stress intensity range for fatigue crack growth in
the metallic lattice �Kth can be directly stated from Eq. �1� as

�Kth = 2��et̄�� �38�
The authors are unaware of any experiments in the literature,
which support or refute Eq. �38�. Formulas similar to Eq. �38�
have been developed for open-cell metallic foams and polymeric
foams, see Gibson and Ashby �2�, Olurin et al. �16�, and Burman
and Zenkert �17�. These experimental and theoretical studies sup-
port the idea that the fatigue crack growth threshold �Kth is de-
pendent on the cyclic fatigue strength �e of the cell wall and on
the cell size �. The authors are unaware of any experimental stud-
ies, which can be used to validate the fracture and fatigue maps
presented here. It is suggested that such validation is a topic for
future study.
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The Through-Thickness
Compressive Strength of a
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Honeycomb Sandwich Core
Sandwich panels with aluminum alloy face sheets and a hierarchical composite square
honeycomb core have been manufactured and tested in out-of-plane compression. The
prismatic direction of the square honeycomb is aligned with the normal of the overall
sandwich panel. The cell walls of the honeycomb comprise sandwich plates made from
glass fiber/epoxy composite faces and a polymethacrylimide foam core. Analytical models
are presented for the compressive strength based on three possible collapse mechanisms:
elastic buckling of the sandwich walls of the honeycomb, elastic wrinkling, and plastic
microbuckling of the faces of the honeycomb. Finite element calculations confirm the
validity of the analytical expressions for the perfect structure, but in order for the finite
element simulations to achieve close agreement with the measured strengths it is neces-
sary to include geometric imperfections in the simulations. Comparison of the compres-
sive strength of the hierarchical honeycombs with that of monolithic composite cores
shows a substantial increase in performance by using the hierarchical topology.
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1 Introduction
1The concept of a thick and light core sandwiched between two

strong thin facings has been used to produce stiff and lightweight
panels since the 19th century �1�. The underlying theory and de-
sign methods for sandwich constructions are well known �2,3�.
For example, it is generally recognized that the stiffness and
strength of a sandwich panel under macroscopic loading �bending,
end loading, and torsion� are sensitive to the thickness of the core
and to the in-plane properties of the face sheets.

Stochastic foam and periodic lattice materials are two broad
classes of core increasingly employed in sandwich construction
�4�. Closed cell foams behave as a continuous core and provide a
continuous interface for bonding to the faces, but they possess a
low specific stiffness and strength. In contrast, lattice materials
have a high specific stiffness and strength due to their high nodal
connectivity �5�. Three categories of periodic lattice materials
have been developed: �i� prismatic cores, �ii� 3D trusses, and �iii�
honeycombs. In this study we shall explore the properties of a
hierarchical sandwich core in the form of a square honeycomb.

Hexagonal honeycombs made from Nomex or from aluminum
alloy are extensively employed in sandwich construction due to
their high specific stiffness and strength in out-of-plane compres-
sion and in longitudinal shear. However, these hexagonal honey-
combs have low values of in-plane stiffness and strength due to a
nodal connectivity of only 3 �6�. Square honeycombs have a
higher nodal connectivity of 4, and thereby have enhanced in-
plane properties. Further, the out-of-plane properties of the square

honeycomb are comparable to those of the hexagonal honey-
combs, see, for example, recent measurements of out-of-plane
compressive strength �7� and of longitudinal shear strength �8�.

It is of interest to explore sandwich panel cores that possess a
high stiffness and strength yet have a low density. Honeycomb
cores made from monolithic composite sheets have a higher spe-
cific stiffness and strength than many metallic honeycombs. The
out-of-plane compressive strength of sandwich panels with a com-
posite or metallic honeycomb core is limited by the elastic buck-
ling of the cell walls when the core has a low relative density
��̄�0.05�. Here, we shall explore a strategy for increasing the
elastic buckling strength of the cell walls by employing sandwich
construction for the cell walls �9�. The microstructure is hierar-
chical in topology: The macroscopic sandwich panel comprises
aluminum alloy face sheets and a square honeycomb core, with
the cell walls of the core made from mesoscopic sandwich panels
�see Fig. 1�a��. These mesoscopic panels comprise a poly-
methacrylimide �PMI� foam sandwiched between woven glass
fiber/epoxy composite faces.

The outline of this paper is as follows. First, competing collapse
mechanisms are considered for the out-of-plane compressive
strength of a sandwich panel with a square honeycomb core. Ana-
lytical expressions are taken from the literature for each mecha-
nism, and the dominant collapse mechanism is plotted on a map
with geometry as axes. Second, an experimental investigation is
conducted to probe the accuracy of the analytical predictions.
Third, the measurements and analytical predictions are compared
with three-dimensional �3D� finite element �FE� simulations, and
the role of geometric imperfection in dictating compressive
strength is assessed. Finally, the measured and predicted compres-
sive strengths are compared with that of monolithic composite
square honeycombs.

1Trade name of Dupont referring to an aramid paper impregnated with epoxy
resin.
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2 Analytical Models for the Competing Collapse
Modes

2.1 Geometry of Core and the Imposed Loading. Consider
a square honeycomb core perfectly bonded to rigid face sheets.
The core has sandwich walls with square cells of side-length l and
height h, and the prismatic direction of the honeycomb core is
aligned with the out-of-plane direction of the overall honeycomb
�Fig. 1�b��. The sandwich walls comprise an isotropic foam of
thickness c and density �c bonded between two orthotropic elastic
faces, each of thickness t and density � f. This representation is
appropriate for the material system studied herein: woven glass
fiber/epoxy faces and a PMI foam core.

The macroscopic sandwich panel is subjected to an out-of-plane
compressive stress �; consequently, each cell wall is subjected to
a line load P per unit length where

P = �
l

2
�1�

while the effective density � of the square honeycomb core is

� = 2
t

l
�2 −

�2t + c�
l

�� f +
c

l
�2 −

�2t + c�
l

��c �2�

Three collapse mechanisms are considered: �i� elastic buckling of
the square honeycomb, �ii� elastic face wrinkling of the mesos-
copic sandwich panels that make up the cell walls of the square
honeycomb, and �iii� plastic microbuckling of the composite face
sheets of the mesoscopic sandwich panels. The out-of-plane com-
pressive strength of the macroscopic sandwich panel is dictated by
the collapse mechanism that has the lowest value of line load Pcr
for any given set of geometric and material parameters. The com-
pressive strengths for mechanisms �i� and �ii� above are sensitive
to the elastic moduli of the foam core in the mesoscopic sandwich
panels. We proceed by summarizing the elastic moduli for a
closed-cell foam.

2.2 Elastic Properties of Closed-Cell Foams. Gibson and
Ashby �4� extensively reviewed the mechanical properties of
open- and closed-cell foams. They showed that Young’s modulus
Ec and the shear modulus Gc of an isotropic, closed-cell foam are
directly related to the relative density �̄��c /�s, where �s is the
density of the parent, solid polymer, such that

Ec

Es
� �2��c

�s
�2

+ �1 − ����c

�s
� �3�

and

Gc � 3
8Ec �4�

Here, Es is Young’s modulus of the solid polymer and � is the
volume fraction of cell wall material contained within the cell
edges. For the PMI foam investigated in Sec. 3 of the present
study, we assume that Es=3600 MPa, �s=1250 kg m−3, and �
=0.6 �4�.

2.3 Elastic Buckling of the Square Honeycomb Core. A
recent experimental study �7� on the compressive collapse of
square honeycombs made from type 304 stainless steel suggests
that the elastic buckling mode resembles torsional-axial buckling
of a square tube �i.e., local buckling of the walls� with built-in top
and bottom edges, as sketched in Fig. 1�c�. Finite element simu-
lations reported later in the current study confirm this mode of
elastic buckling for the sandwich-walled square honeycomb. This
buckling mode is modeled by the buckling of a single plate with
fully clamped top and bottom edges and simply supported sides.
Ericksen and March �10� analyzed this reduced problem for a
sandwich plate made from orthotropic faces and an orthotropic
core, and we make direct use of their analytical results. The bifur-
cation line load reads

Pbuck =
K�2D

l2 �5�

where K is a buckling coefficient as prescribed by Ericksen and
March �10� and D is the bending stiffness of the sandwich plate.
In our problem, we consider a sandwich plate made from ortho-
tropic composite faces of identical thickness t. Upon neglecting
the contribution from the foam core to the overall bending stiff-
ness D we have

D =
	E1fE3f

1 − �13f�31f

t�c + t�2

2
�6�

where Eif and �ij f are Young’s modulus and Poisson’s ratios of the
orthotropic faces along the xi= �x1 ,x3� directions, as defined in
Fig. 1�b�. �For the composite faces considered below Young’s
moduli are equal along directions x1 and x3.�

The formula for the buckling coefficient K is explicit but
lengthy and is omitted here. They are functions of geometry �c, t,
l, and h as defined in Fig. 1�b��, of the enforced boundary condi-
tions along the edges of the plate, of Young’s modulus Ec and
shear modulus Gc for the isotropic core, as well as of the shear
modulus, Young’s moduli, and Poisson ratios of the faces in the
x1−x3 plane.

l

t
c

h
x1 x2

x3

(c)(b)(a)

plate A plate B

unit cell unit cell

Fig. 1 „a… Sketch of a square honeycomb core with the cell walls of the core made from a mesoscopic sandwich
panels, „b… schematic of the unit cell and geometrical parameters employed in the analytical model and finite
element analysis, and „c… torsional-axial buckling mode of square honeycomb core
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2.4 Elastic Face Wrinkling. The sandwich plates in the walls
of the square honeycomb can collapse by an alternative mecha-
nism to those considered by Ericksen and March �10�: elastic
wrinkling of the faces of the sandwich plate. This wrinkling mode
is a local instability associated with short wave buckling of the
faces of the mesoscopic sandwich plate and occurs when a com-
pressive stress within the faces attains a critical value, see, for
example, Ref. �3�. Assume that the sandwich plate is loaded along
the x3-direction. Then, the critical line load Pwrink in the sandwich
plate depends on Young’s modulus E3f in the face and on the
moduli �Ec ,Gc� of the core such that

Pwrink = 1.7t�E3fEcGc�1/3 �7�
This formula gives the bifurcation stress for the perfect structure
in the absence of geometric imperfection. It is appreciated that the
presence of imperfections knocks down this strength by a factor of
about 2 for most practical sandwich structures �3�.

2.5 Plastic Face Microbuckling. It is generally recognized
that the composite faces of a sandwich plate can fail by plastic
microbuckling, particularly when the composite has wavy fibers
due to its woven construction, see Ref. �11� for details on plastic
microbuckling. Here, we treat the microbuckling strength � f as an
intrinsic material property. Consequently, the microbuckling line
load in the x3-direction on the sandwich plates of the square hon-
eycomb reads

Pmb = 2t� f �8�
where we neglect any contribution from the compression of the
core.

2.6 Collapse Mechanism Map. In the remainder of this study
we shall limit our attention to the practical case of square honey-
combs with aspect ratio h / l=1, thereby reducing the number of
independent geometric variables. The regimes of dominance of
the collapse modes can then be illustrated in a collapse mecha-
nism map, with axes t /c and l /c. In construction of the map, it is
assumed that the operative collapse mode is the one associated

with the lowest line load for any given geometry.
A collapse mechanism map has been constructed for the mate-

rials used in the experimental study, as listed in Table 1. This map
is plotted in Fig. 2�a�; it assumes a foam core of relative density
�̄=6% as used in the experiments. In addition, a map is shown in
Fig. 2�b� for a higher relative density of foam core �̄=20% for
comparison purposes. Although such high density PMI foams ex-
ist, they are more expensive and less available than the �̄=6% and
so no experiments were conducted on the higher density foam.
Contours of nondimensional compressive strength �̄� Pcr / Pmb
have been added to the maps, upon treating the microbuckling line
load as an intrinsic reference property of the sandwich plates,
independent of �c , l ,h�.

The collapse mechanism map of Fig. 2�a� ��̄=6%� displays two
failure modes: Core buckling dominates the map with a much
smaller regime of face wrinkling. The dominance of core buckling
can be traced to the fact that this mechanism is sensitive to a low
value of shear modulus in the foam core. Now increase �̄ to 20%.
The buckling load and face wrinkling loads increase, and mi-
crobuckling replaces face wrinkling as an active mechanism, see
Fig. 2�b�.

The accuracy of the failure map given in Fig. 2�a� has been
partially assessed by conducting a series of experiments on the
geometries shown in the map. It was not practical to cover a much
larger regime of the map due to manufacturing and testing con-
straints. These experiments are now reported.

3 Experimental Investigation
A series of compressive tests was performed on square honey-

combs with cell walls made from glass fiber/epoxy composite face
sheets and a �̄=6% foam core.

3.1 Manufacturing Technique. The sandwich cores were
made from a closed-cell PMI foam of relative density �̄�6%
�trade name Rohacell 71 IG� and thickness c=5.7 mm. This foam

Table 1 Measured properties of the woven glass fiber/epoxy faces and a PMI foam core

Material
Density
�kg m−3�

Compressive strength
�MPa�

Young’s modulus
�GPa�

Shear modulus
�GPa�

Poisson’s ratio
���

GFRP � f =1957 � f =525 E3f =32 G31f =4 �31f =0.15
PMI foam �c=75 1.45 Ec=0.089 Gc=0.038 �c=0.16
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l/
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Fig. 2 Collapse mechanism map and contours of normalized strength �̄ÆPcr/Pmb of the hierarchical square
honeycomb made from elastic face and polymeric foam core of relative density „a… �̄=0.06 and „b… �̄=0.20. The six
tested geometries are marked on the map „a….
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was selected for its low density ��c=75 kg m−3� and its capacity
to sustain a pressure up to 0.35 MPa at 125°C, allowing autoclave
curing.

The faces were made from one to three stacked plies of eight
harness satin weave 7781 E-glass pre-impregnated �42 wt % of
resin before curing� in a toughened epoxy matrix resin �trade
name ACG MTM28/GF0100�. This prepreg was selected for its
low curing temperature of 120°C, high damage tolerance, and
ability to bond directly to the PMI foam without additional adhe-
sive. After curing, each ply has a thickness of 0.2 mm, a volume
fraction of 55% glass fibers, and a density of � f =1957 kg m−3.
The manufacturing sequence of the macroscopic square honey-
comb is as follows.

�i� The PMI foam was dried for 2 h in a furnace at 100°C in
order to reduce the moisture content. Layers of prepreg
were placed symmetrically on each side of the foam, and
the 0–9 deg orientations of the laminate were aligned with
the x1 and x3 directions �see Fig. 1�. Air pockets between
each composite layer were removed by debulking the
panel at room temperature under vacuum for 3 min.

�ii� The sandwich panel was then cured in an autoclave for 1 h
at 120°C and a gauge pressure of 0.25 MPa, with the
usual vacuum bagging technique.

�iii� The sandwich panel was cropped by a waterjet cutting
machine into long strips of height h= l and length L=4l
+2�L, where �L is a small overhang length set at 5 mm,
see Fig. 3�a�. Cross-slots were waterjet cut into the strips.
These slots were of spacing l and of width �c+2t+e�,
where e is a clearance of 0.1 mm to provide a sufficiently
tight fit during honeycomb assembly.

�iv� Structural adhesive �trade name 3M Scotch-Weld DP490�
was applied over the slot areas, and the honeycomb was
assembled by slotting together the strips �Fig. 3�b��. Fi-
nally, the honeycomb was bonded to two 2014-T3 alumi-
num alloy face sheets of thickness 3 mm using the same
structural adhesive as for the core �Fig. 3�c��.

A series of compression tests was performed on the macro-
scopic sandwich panels. Each specimen comprised 4	4 cells
with a cell size l varying from 30 mm to 75 mm and a face
thickness t between 0.2 mm and 0.6 mm. Consequently, the core
density � varied from 38 kg m−3 to 167 kg m−3. The cell sizes
and densities of the tested specimens are listed in Table 2.

3.2 Material Properties of the Composite-Foam Sandwich
Plates of the Square Honeycomb. The in-plane microbuckling
strength � f, Young’s modulus E1f =E3f, and Poisson ratio �13 of

Table 2 Geometry, predicted compressive strength, and measured compressive strength of
the macroscopic sandwich panels with a square honeycomb core

t
�mm�

l
�mm�

�
�kg m−3�

Predicted strength
�MPa�

Measured strength
�MPa�Wrinkling Microbuckling Buckling First eigenvalue

0.2 60 38 5.4 7.2 8.0 5.2 3.1
0.2 30 73 10.8 14.4 17.1 9.8 4.3
0.6 75 71 13.0 17.3 8.4 8.4 7.8
0.6 60 75 16.3 21.7 11.1 11.2 10.9
0.6 45 116 21.7 28.9 16.3 16.4 11.7
0.6 30 167 32.5 43.3 29.1 32.4 15.8

(b)

L

l (c)(a)

x2x1

x3

Fig. 3 Photographs a specimen with l=75 mm and t=0.6 mm demonstrat-
ing the manufacturing technique: „a… a waterjet machined panel, „b… the as-
sembling technique, and „c… the final product
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Fig. 4 „a… The measured compressive and shear responses of the eight harness satin
weave 7781 E-glass/epoxy composite and „b… the measured uniaxial compressive re-
sponse of the PMI foam „Rohacell 71 IG… used for the mesoscopic sandwich panel
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the composite face sheet were measured by compressing the 0–90
deg composite along the x3-direction within a Celanese test rig
�12� at a nominal strain rate of 10−4 s−1. The Celanese tests were
performed on specimens of width 10 mm, thickness 2 mm, and
gauge length 8 mm. Strain gauge rosettes were adhered to both
faces of the specimen and confirmed that the degree of macro-
scopic bending in the tests was negligible. The measured com-
pressive stress versus strain response is shown in Fig. 4�a�; the
measured axial Young’s modulus is E3f =32 GPa, the Poisson’s
ratio is �31f =0.15, and the microbuckling strength is � f
=525 MPa. These values are of the order expected from the
specification given by the manufacturer.

The shear elastic properties of the composite faces were mea-
sured via a uniaxial tensile test on 
45 deg material �13�. We
denote the applied tensile stress as �x, and the corresponding axial
strain and transverse strain as �x and �y, respectively. Then, the
shear stress � versus shear strain 
 relation is obtained via the
connections �=�x /2 and 
=�x−�y. The shear modulus G31f fol-
lows immediately as the initial slope of the � versus 
 response.
These uniaxial tensile tests were conducted on specimens of width
20 mm, thickness 0.4 mm, and gauge length 50 mm at a nominal
strain rate of 10−4 s−1. Strain gauge rosettes were used on both
sides of the coupons, and the measured shear modulus was G31f
=4.0 GPa. The derived shear stress and strain response is in-
cluded in Fig. 4�a�.

The uniaxial compressive response of the Rohacell 71 IG foam
core was measured by compressing cylindrical specimens of di-
ameter 50 mm and height 6 mm between lubricated flat platens at
an applied nominal strain rate of 10−3 s−1. The nominal stress was
estimated from the load cell of the test machine while the applied
strain was deduced from the relative displacement of the top and
bottom platens using a laser extensometer. The measured response
is plotted in Fig. 4�b� and displays an initial elastic response and
plateau strength of approximately 1.5 MPa and densification of
the foam commences at a nominal compressive strain of 0.45. The
elastic modulus of the foam was determined by conducting an
unloading/reloading cycle, as shown in Fig. 4�b�. However, diffi-
culties in adhering strain gauges to the foam specimens mean that
elastic Poisson’s ratio was unable to be extracted from these com-
pression tests.

We measured the elastic properties of the Rohacell 71 IG foam
core using a vibro-acoustic technique based on Chaldni’s law �14�.
For an isotropic material, the method consists of identifying the
x-mode resonance frequency fx and ring mode resonance fre-
quency fo of square plates with free edges. This technique is
simple and requires basic equipment, as discussed in Ref. �14�.
The square plate is simply supported by soft blocks of foam and
excited by a loudspeaker mounted beneath it. The loudspeaker is
driven by a sinusoidal wave generator, and the frequency is ad-
justed to resonance. Chaldni’s patterns are revealed by sprinkling
a light powder on the surface. Once the fx and fo frequencies have
been measured, both Young’s modulus Ec and Poisson’s ratio �c
are determined via the prescriptions

�c � 1.48
 fo
2 − fx

2

fo
2 + fx

2� �9�

Ec � 0.46�1 − �c
2��fo

2 + fx
2��ca

4/c2 �10�

where a is the square plate length, �c is the plate density, and c is
the plate thickness.

In these measurements, a Rohacell 71 IG foam square plate of
dimension a=315 mm, �c=75 kg m−3, and c=5.7 mm was em-
ployed. The resonance frequencies fx and fo were found to be 61.9
Hz and 68.6 Hz, respectively, leading to �c=0.16 and Ec
=89 MPa. These values are within a few percent given by Eq. �3�
and the textbook values Es=3600 MPa, �s=1250 kg m−3, and
�=0.6 �4�.

3.3 Measured Compressive Response of the Macroscopic
Sandwich Panel With Square Honeycomb Core. Compression
tests were performed on the macroscopic sandwich panels using a
1000 kN servohydraulic frame test machine and an applied mac-
roscopic nominal strain rate of 10−4 s−1. The macroscopic com-
pressive stress � on the core was inferred from the load cell of the
test machine while the average through-thickness compressive
strain � was deduced from the relative displacement of the top and
bottom faces of the sandwich panel, upon making used of two
laser extensometers.

The measured out-of-plane compressive response of each sand-
wich panel is plotted in Fig. 5. All display an initial elastic re-
sponse, with a peak load at a strain level ��0.02 followed by a
catastrophic drop in load. Each test was terminated after the drop
in load, and the specimens were then visually examined to deter-
mine the collapse mechanism. It was not possible to use visual
evidence to distinguish between the three anticipated collapse
modes of elastic buckling, face wrinkling, and plastic microbuck-
ling: In all cases the composite faces of the square honeycomb
creased in bending, with no evidence of the initial cause of the
failure.

The analytical predictions of compressive strength �Eqs. �1�,
�5�, �7�, and �8�� for the three competing collapse modes have
been added to Fig. 5. In most cases all three analytical predictions
are substantially higher than the measured strength. The tests re-
ported in Figs. 5�c� and 5�d� are the exceptions to this observation:
In these cases the elastic buckling strength is comparable to the
measured strength. Note that these two geometries lie remote from
the elastic buckling/face wrinkling boundary, as plotted in Fig.
2�a�. In order to improve the accuracy of prediction, finite element
simulations are performed, and the imperfection sensitivity is as-
sessed.

4 Finite Element Modeling

4.1 Model Details. Finite element calculations of the
through-thickness compressive response of the sandwich panels
with a square honeycomb core were performed using the finite
element package ABAQUS standard �Hibbitt, Karlsson & Sorensen,
Inc. �HKS��. All simulations reported here are performed on the
unit cell shown in Fig. 1�b� in the form of a cruciform section,
including the nonlinear effects of large displacements.

The unit cell of the square honeycomb was modeled using lin-
ear 3D brick elements, i.e., C3D8R following ABAQUS notation.
Typically, the model comprised four brick elements through the
thickness of each composite face sheet and five to ten brick ele-
ments through the depth of the foam core. In order to avoid ex-
cessive distortion, the element aspect ratio was kept below 5 for
all simulations. One exception is that the specimen with t
=0.2 mm and l=60 mm was modeled with an aspect ratio of 10
in order to reduce the model size. This meshing rule assures con-
vergence but leads to large models, for example, the model with
t=0.6 mm and l=75 mm contains over 106 degrees of freedom.

In order to capture the torsional-axial buckling mode �Fig. 1�c��
and the face wrinkling mode, antiperiodic boundary conditions
were imposed on the outer plate edges of the cruciform section.
All nodes on the top and bottom of the unit cell were fully
clamped. Loading was specified by prescribing an increasing rela-
tive vertical displacement � between the top and bottom faces.

The PMI foam was modeled as an isotropic elastic-ideally plas-
tic solid, using the properties values presented in Sec. 3. The
post-yield behavior was modeled with the crushable foam formu-
lation available in ABAQUS using an associated flow rule. The ratio
of the uniaxial compressive strength to the hydrostatic strength
was set to 	3, and the tensile and compressive hydrostatic
strengths were assumed to be equal. With these assumptions the
crushable foam model in ABAQUS reduces to the Deshpande and
Fleck �15� foam model with plastic Poisson’s ratio of 0. Mild
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volumetric hardening of the plastic response of the foam was in-
cluded in order to assure numerical stability.

The woven glass fiber/epoxy composite was treated as an ortho-
tropic solid with the in-plane measured properties stated in Sec. 3.
Consider the representative sandwich plate A, as shown in Fig.
1�b�. The properties in the direction normal to that of the compos-
ite plates were taken as E2=7.5 GPa, G12=G32=4.0 GPa, and
�12=�32=0.15. In order to mimic plastic microbuckling, it was
assumed that the composite was modeled as an elastic-ideally
plastic solid. J2 flow-theory was adopted with a yield strength
equals to the microbuckling strength �� f =525 MPa� and a mild
isotropic hardening to assure numerical stability. Although this
description is only approximate it suffices to capture the onset of
microbuckling for the in-plane uniaxial stress state imposed on the
composite layers.

4.2 Elastic Buckling Analysis. The FE method has been used
to determine the lowest buckling load �the first eigenvalue�. The
compressive strength is compared with the analytical models and
the measured response in Fig. 5 and in Table 2. In general, the
predicted first eigenvalues are in good agreement with the lowest
collapse load predicted analytically by the three competing
mechanisms. There is one exception: The analytical model under-

estimates the compressive strength of the specimen with t
=0.6 mm and l=30 mm. It is argued that this is due to the fact
that the analytical buckling model is inaccurate for stubby plates,
l /c�6. The predicted eigenmode resembles the assumed buckling
mode of elastic bucking model and resembles the face wrinkling
mode, depending on the geometry considered. Consider, for ex-
ample, the geometry as specified by t /c=0.035 and l /c=5.25 and
label this specimen A in Fig. 2�a�. This specimen undergoes elas-
tic face wrinkling according to both the analytical model and the
FE simulation, see Fig. 6�a� for the observed eigenmode. Second,
consider specimens with t /c=0.105, and l /c=10.5 and l /c=5.25,
and label them B and C in Fig. 2�a�. The lowest FE eigenmode for
these two specimens is given in Figs. 6�b� and 6�c�, respectively.
Plainly the modes are elastic buckling of the sandwich plates, and
these modes are in agreement with the modes predicted by the
analytical model of Ericksen and March �10�.

4.3 Imperfection Sensitivity. The discrepancy between mea-
sured compressive strength and the extracted eigenvalues indi-
cates a possible sensitivity to geometric imperfection. This sensi-
tivity was scoped by FE calculations of the collapse response for
sandwich plates with initial imperfections in the shape of the first
elastic eigenmode. The magnitude of the initial imperfection is
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Fig. 5 The measured compressive response of square honeycomb specimens with „a…
l=60 mm and t=0.2 mm, „b… l=30 mm and t=0.2 mm, „c… l=75 mm and t=0.6 mm, „d…
l=60 mm and t=0.6 mm, „e… l=45 mm and t=0.6 mm, and „f… l=30 mm and t=0.6 mm.
Also added in the figure is the compressive strength predicted by analytical models, FE
buckling analysis, and FE static analysis with an imperfection of ςÆw / l=0.3%.
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defined as follows. The maximum transverse deflection of the
walls of the honeycomb is set to w=�l, where � is in the range of
0–1.7%.

The FE predictions of the compressive stress versus strain re-
sponses of the geometries labeled A, B, and C in Fig. 2 are plotted
in Fig. 7. �These predictions correspond to the measured re-
sponses plotted in Figs. 5�b�, 5�d�, and 5�f�, respectively.� The FE
calculations clearly show that the peak stress is sensitive to the
magnitude of initial imperfection, and an initial imperfection on
the order of �=0.3% is needed to reproduce the qualitative shape
of the measured collapse response.

The finite element predictions of the peak compressive strength
of the square honeycombs with �=0.3% are included in Fig. 5.
Mixed agreement is obtained with the measured values. The dis-
crepancy between the measurements and FE predictions is largest
for the specimens with l�60 mm. For these specimens it would
be necessary to consider a smaller imperfection in order to obtain
the measured value of peak load. A quantification of the actual
imperfections within the macroscopic sandwich panel is difficult
to achieve in view of the 3D nature of the structure. This is sug-
gested as a topic of future study using, for example, a computed
axial tomography �CAT� scan machine but is not pursued further
here.

5 Comparison of the Measured Compressive Strength
for Square Honeycombs With Sandwich Walls and With
Monolithic Walls

It is instructive to explore the degree to which a hierarchical
sandwich construction is advantageous over a more conventional
honeycomb. Here, we compare the through-thickness compressive
strength of a macroscopic sandwich panel with a square honey-
comb core made from monolithic plates with the compressive
strength of a macroscopic sandwich panel with a square honey-
comb core made from sandwich plates. An additional series of
compressive tests has been performed for square honeycombs
made from a monolithic, woven glass fiber/epoxy composite. The
architecture is identical to that reported above for the foam-cored
sandwich plates, but now the square honeycomb is constructed
with the foam core absent. It is unclear a priori whether the pres-
ence of the foam core elevates or depresses the compressive
strength: The presence of a foam core raises the bending stiffness
D in Eq. �6� but it lowers the shear stiffness of the section.

Monolithic square honeycombs with 6	6 cells were manufac-
tured from eight harness satin weave E-glass laminate of thickness
t=0.4 mm using micromilling machining and epoxy bonding, see
Fig. 8 for details of the geometric parameters and a sketch of the
manufacturing route. The cell aspect ratio of the specimens was
maintained at h / l=1. The cell size l was varied from 10.4 mm to
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Fig. 7 FE predictions of the compressive response of speci-
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=0.6 mm, and „c… l=30 mm and t=0.6 mm. Imperfections in
the first eigenmode with maximum amplitude ςÆw / l are
specified.

(a) (b) (c)

wrinkling buckling buckling

Fig. 6 Finite element predictions of the first eigenmode ex-
tracted for the specimen with „a… l=30 mm and t=0.2 mm, „b…
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h

x1

x2
x3

Fig. 8 Sketch of a conventional monolithic square honeycomb
showing the geometrical parameters along with the manufac-
turing technique of the monolithic square honeycomb
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31.3 mm in order to obtain three core densities of 50 kg m−3,
100 kg m−3, and 150 kg m−3. Again, aluminum alloy face sheets
of thickness 3 mm were bonded to the top and bottom of the
square honeycomb using the structural adhesive 3M Scotch-Weld
DP490.

Three nominally identical specimens were tested for each core
density, and the measured strength varied by only 10% for a given
core density. A postmortem visual examination of the failed speci-
mens suggested that each failed by elastic buckling of the honey-
comb walls. The average compressive strengths are compared
with those of the hierarchical square honeycombs of face thick-
ness t=0.6 mm in Fig. 9�a�. Likewise, the average compressive
strengths are compared with those of the hierarchical square hon-
eycombs of face thickness t=0.2 mm in Fig. 9�b�.

The analytical predictions of elastic buckling strength �Eq. �5��
for the monolithic and hierarchical honeycombs have been added
to Fig. 9. For the monolithic honeycomb, the analytical model of
Ericksen and March �10� is again employed but with

D =
	E1fE3f

1 − �13f�31f

t3

12
�11�

This prediction is in good agreement with the measured strengths.
As already noted, bifurcation calculation of Ericksen and March
�10� is nonconservative for the hierarchical honeycombs.

We note from Fig. 9 that there is a small advantage in using the
hierarchical honeycomb over the monolithic honeycomb at suffi-
ciently low core densities. But this comparison is for the case of a
foam core of low modulus. As discussed in Sec. 2, additional
structural advantages are expected by considering a hierarchical
honeycomb for the choice of a stiffer foam core.

6 Concluding Remarks
The hierarchical sandwich panel with a square honeycomb core

introduced in this study shows promise as it has a substantially
higher through-thickness compressive strength than an equivalent
sandwich panel with a monolithic composite core. The compres-
sive strength of the hierarchical sandwich panel is dictated by a
set of competing failure modes and these are best illustrated in the
form of a collapse map, with geometry as axes. Analytic models
are presented here for the competing collapse modes; these have

limited accuracy due to the presence of geometric imperfections.
Finite element simulations can give improved accuracy but these
require as input the level of imperfection. A characterization of the
imperfections remains a challenging task.
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One-Way and Two-Way Coupling
Analyses on Three Phase Flows
in Hydrocyclone Separator
The flow behavior in hydrocyclones is quite complex. The computational fluid dynamics
method was used to simulate the flow fields inside a hydrocyclone in order to investigate
its separation efficiency. In the computational fluid dynamics study of hydrocyclones, the
air-core dimension is a key to predicting the mass split between the underflow and
overflow. In turn, the mass split influences the prediction of the size classification curve.
Generally in hydrocyclone simulations, assuming low particle volume fractions, the dis-
crete phase effects on the continuous phase have been excluded; therefore, one-way
coupling method has been used. Due to high particle consistencies, regions in some
cases, especially in underflow areas, excluding discrete phase effects on continuous phase
may be ineligible. In this study for an example case by consisting discrete phase effects
and using two-way coupling method, simulation accuracy noticeably has been improved.
Three models, the k�� model, the Reynolds stress model (RSM) without considering air
core, and Reynolds stress turbulence model with volume of fluid multiphase model for
simulating air core, were compared for the predictions of velocity, axial, and tangential
velocity distributions and separation proportion. Results by the RSM with air-core simu-
lation and two-way coupling model, since it produces some detailed features of the
turbulence and discrete phase mode effects, are clearly closer in predicting the experi-
mental data than the other two. �DOI: 10.1115/1.3130445�

Keywords: hydrocyclone, VOF multiphase, Lagrangian approach, particles trajectory,
air core, one-way coupling, two-way coupling

1 Introduction
In the past 50 years, use of hydrocyclones has had a rapid

growth in the chemical, mineral, coal and powder-processing in-
dustries. The reasons for this popularity lie in the design and op-
erational simplicity, high capacity, low maintenance and operating
costs, and the compact size of the device.

A typical hydrocyclone consists of a cylindrical section with a
central tube connected to a conical section with a discharge tube.
An inlet tube is attached to the top section of the cylinder, as
shown in Fig. 1. The fluid is injected tangentially into hydrocy-
clone, which causes swirling and thus generates centrifugal force
within the device. This centrifugal force field brings about a rapid
classification of particulate material from the medium in which it
is suspended. Various investigations have been performed to de-
scribe and improve design of hydrocyclone.

The first patent on hydrocyclones was published by Bretney �1�.
Despite this, it took half a century before they were extensively
used. Since 1950, a range of papers has been published concern-
ing the operation of hydrocyclones and some mathematical mod-
els describing velocity profiles, the pressure drop, and the separa-
tion efficiency of hydrocyclone �2–9�. A first systematic and
detailed experimental work was performed by Kelsall �2�; his
measurements of radial, axial, and tangential velocity profiles
served as a benchmark for many subsequent investigations.

Computational fluid dynamics �CFD� provides a means of pre-
dicting velocity profiles under a wide range of design and operat-
ing conditions. The numerical treatment of the Navier–Stokes
equations, the basis of any CFD technique, crept into analysis of
the cyclone in the early 1980s. This resulted from the rapid im-

provement in computers and a better understanding of the numeri-
cal treatment of turbulence. A successful model, especially based
on computational fluid dynamics, would be a useful tool for
studying design dimensions. More importantly, alternative geom-
etries may be rapidly examined.

In this paper, the aim of modeling was to predict the separation
effectiveness and to compare the performed simulations based on
three models �the k−� model, the Reynolds stress model without
considering air core, and Reynolds stress turbulence model with
volume of fluid �VOF� multiphase model for simulating air core�
with experimental results, with respect to the predictions of sepa-
ration effectiveness, and axial and tangential velocity distribu-
tions. The RSM with air-core simulation model, since it produces
some detailed features of the turbulence and multi phase, is
clearly closer in predicting the experimental data than the other
two.

2 Hydrocyclone CFD Simulation: Literature Review

2.1 Turbulence Modeling. Industrial hydrocyclones typically
operate at velocities where the flow is turbulent. However, the
strong swirl, the flow reversal, and the flow separation near the
underflow introduce anisotropy and strain into the turbulence.
Most hydrocyclones in mineral processing applications develop
an air-core and the free surface between the air and the water
introduces further turbulence anisotropy. These characteristics
make modeling hydrocyclones using CFD difficult and the addi-
tion of solids adds even more complexity.

Rajamani and Devulapalli �10� modeled hydrocyclones using a
2D axisymmetric grid where the air core was not resolved and the
air/water interface was treated using a shear free boundary condi-
tion. Turbulence anisotropy was incorporated into the model by
using a modified mixing length turbulence model where a differ-
ent mixing length constant was used for each component of the
momentum equation. Although the model required calibration was
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able to predict velocities measured by these authors using laser
Doppler anemometry with reasonable accuracy. k−� models in-
trinsically make the assumption that the turbulence is isotropic
because only one scalar velocity fluctuation is modeled. Further
the Bousinessq approximation on which the eddy viscosity relies
intrinsically implies equilibrium between stress and strain. This
would suggest that k−� models are not suitable for modeling
turbulence in hydrocyclones and this has been shown to be the
case by Ma et al. �11� and others. However, Dyakowski and Wil-
liams �12� suggested that the k−� model can be used on small
�below 44 mm radius� hydrocyclones. To address this, other au-
thors used the k−� renormalization group �RNG� model with the
swirl correction �13–17�. However, Suasnabar �15� found that the
swirl constant in the RNG model needed to be increased to im-
prove predictions but beyond a certain point, further increases
caused numerical instability. As an alternative, Suasnabar �15� ad-
justed the constants in the standard k−� model but acknowledged
that this approach was limited. Stress transport models, in particu-
lar, the full differential Reynolds stress model �RSM�, such as that
developed by Launder et al. �18� solve transport equations for
each individual Reynolds stress. This enables stress transport
models to model anisotropic turbulence and strained flows where
the Bousinessq approximation is known to be flawed. While more
computationally intensive than k−� models, stress transport mod-
els are being used to model turbulence in hydrocyclones. Boysan
et al. �19� used an algebraic stress model but the full RSM has
been used in a more recent work. Cullivan et al. �20�, Suasnabar
�15�, Slack et al. �21�, and Brennan et al. �22� all used variants of
the Launder et al. �18� model. However even here, the predictions
are not what they could be and there is a debate about appropriate
modeling options, even if Slack et al. �21� found that the RSM
gave good predictions of velocities in gas cyclones.

We found that the RSM, where the air-core was being resolved
with the VOF model, gives better cut size predictions in compari-

son with simulation of Narasimha �17� 100 mm hydrocyclone. Cut
size is defined as a reference size, which at least 50% of particles
with dimensions above it separated from the flow. Here d50 is
defined as diameter, which is equal to this reference size �23�.
However, this model cannot predict air-core dimension well. It
can be seen that prediction error is about 50%.

2.2 Air-Core Modeling in Hydrocyclones. There is no doubt
that a stable flow field in cyclones is a prerequisite for effective
performance. The stability of the flow field is, to a great extent,
dependent on parameters such as the feed pressure, the feed con-
centration, and so on, but the internal structure of the flow field
itself also has an important effect.

One of the most important internal structures is the air-core
generated inside the cyclone. At start up, a low-pressure region
develops causing the formation of an air-core along the central
axis. The classical literature on hydrocyclones makes very little
reference to the air core, although in the 1990s some investiga-
tions were made of its role by Barrientos et al. �9�, Castro and
Concha �24�, Concha et al. �25�, and Dyakowsky and Williams
�12�.

In spite of its simple geometry and operation, explaining the
detailed mechanism of the cyclone is extremely complicated. One
difficulty in finding the actual flow in cyclones is the necessity of
specifying the form and location of the air-core surface. In the
usual models applied to a cyclone, the interface that bounds the air
core is modeled as a fixed cylindrical surface, which greatly sim-
plifies the problem. Many researchers developed theoretical mod-
els to approximate the air-core radius, for example, Barrientos et
al. �9�, Steffens et al. �26�, Davidson �27�, and Dyakowsky and
Williams �12�.

Numerical modeling of the air-core for liquid-phase cyclones
has been dealt with in a number of ways. Before the work of
Romero and Sampaio �28�, most authors assumed that the air-core
had a fixed diameter and applied a slip boundary condition at the
interface, for example, Hsieh and Rajamani �29� and Malhotra et
al. �30�. This is computationally advantageous but means that the
CFD code cannot predict the air core in any way. Predictions of
the air-core diameter have been provided through: application of
Bernoulli’s equation applied with a minimization procedure �31�,
the use of an effective air-core interface viscosity �12�, and
through application of Young–Laplace’s relation �32�. Notably, the
latter approaches offer the potential to account for asymmetric
air-core geometry.

Pericleous and Rhodes �33� used the algebraic slip mixture
�ASM� model, while Suasnabar �15�, Cullivan et al. �20,34�, and
Brennan et al. �35� used the volume of fluid model. Both of these
models are implemented in the commercial CFD code FLUENT and
are similar in that they both solve an additional transport equation
for the volume fraction of each additional phase. The ASM model
is designed for dispersed two phase flows and Pericleous and
Rhodes �33� used this model mainly to simulate the slurry phase,
but it is interesting to note that it worked for the air core as well.
The VOF model is simpler in that it does not have a drift calcu-
lation and assumes that the two phases do not interpenetrate, so it
is probably a better model if the slurry phase is not to be modeled
in detail.

2.3 Particle Fluid Model. The goal of a CFD simulation of a
classifying hydrocyclone is to predict classification and if this
goal is to be achieved then the interactions between the particulate
phases and the fluid must be modeled. In CFD there are two
approaches to simulating particulate phases in fluid systems; these
are the Lagrangian and Eulerian approaches.

A Lagrangian simulation runs “on top” of a single phase CFD
simulation and simulates the paths of individual particles through
the fluid by a double integration of the particle acceleration, which
is calculated from a force balance on the particle. The particle
force balance includes drag, buoyancy forces, and other body
forces and the drag force is calculated from the local fluid velocity

Fig. 1 Schematic of conventional hydrocyclone
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as predicted by the single phase CFD calculation. The particle
path calculation starts from an initial position, which is usually the
feed boundary condition and terminates when the particle has left
the domain via an outlet boundary condition or reaches a stagnant
zone.

Hsieh �36� used the Lagrangian approach to predict classifica-
tion of limestone in a 75 mm hydrocyclone. Hsieh �36� used the
mean velocity field from his 2D axisymmetric CFD calculation of
the water phase and did not incorporate any effects due to the
turbulence. The Tromp �or cyclone efficiency� curve was con-
structed from repeated simulations for different particle sizes �37�.
Hsieh’s �36� simulations predicted the d50 of the 75 mm cyclone
for limestone very well, but the short circuiting of large particles
was not predicted and the cut above the d50 was not evaluated
well compared when it was measured. Here d50 defined as Hsieh
�36� attributed this shortcoming to the 2D axisymmetric grid
equivalent to a ring inlet and Hsieh �36� suggested that the effects
of turbulence and particle/particle interactions should be incorpo-
rated in the simulation. Devulapalli et al. �38–40� extended
Hsieh’s Lagrangian approach and incorporated the effects of tur-
bulence by using a Lagrangian cloud model developed by Baxter
and Smith �41�, where the mean position of a cloud of particles is
calculated and where the cloud was released from the cyclone
inlet. The spread of the cloud about the mean position is calcu-
lated by a probability distribution function �defined as a function
of the turbulence� as the cloud moves through the domain. Devu-
lapalli �40� used the Lagrangian cloud approach to predict Tromp
curves for a variety of 250 mm hydrocyclones �using several dif-
ferent vortex finders and spigots� passing limestone and copper
ore. Again the d50 was predicted well, but again the cut above the
d50 was not evaluated well compared when it was observed from
real experiments using a cyclone of the same geometry. Devulla-
palli �40� suggested that a full 3D grid of the cyclone, with better
turbulence models and other particle effects, was needed to im-
prove these predictions.

The Lagrangian approach has been used to model multiphase
flows using large eddy simulation for the continuous fluid phase
�42–44�. These studies have focused on simulating the damping of
the turbulence by small dense suspended particles and have used
two-way coupling where the momentum exchange with the par-
ticles by drag is incorporated as a source term in the fluid phase
momentum equation. The studies by Portela and Oliemans �43�
and Millelli et al. �44� have also modeled the effect of the dis-
persed phases on the large eddy simulation �LES� subgrid scale
model.

Eulerian CFD techniques treat the dispersed phases as a
pseudocontinuum and solve transport equations for the phase con-
centrations. Flows containing dispersed solid phases at high con-
centrations and where interparticle collisions result in additional
stresses can be simulated using a full Eulerian granular flow ap-
proach �45,46�, where momentum and continuity equations are
solved for both the dispersed phases and the continuous phases.
The full Eulerian granular flow approach also solves transport
equations for the continuous-phase turbulence and also solves
transport equations for the granular temperature and granular pres-
sure, which are used to calculate effective viscous stresses in the
dispersed phase momentum equation.

Mixture model is a simplified aspect of Eulerian approach �47�
where the momentum and continuity equations are only solved for
the mixture and a transport equation, which contains an equilib-
rium slip velocity that is solved for the volume fraction of each
phase.

The Eulerian approach has been used to simulate medium seg-
regation in dense medium cyclones by Suasnabar �15�. Both the
full Eulerian multiphase granular flow model �45,46� and the sim-
plified Mixture model �47� were used to model the medium, and a
single medium particle size was used. The Eulerian granular flow
model and the mixture model predicted similar velocities and me-
dium concentrations. The Eulerian granular flow model was felt to

be more fundamentally correct but the mixture model was com-
putationally more economical.

The advantage of the Lagrangian multiphase approach is that
particle-particle and particle-fluid interactions are calculated dy-
namically for every particle present in the system based on the
instantaneous velocity of the particle. By comparison the Eulerian
approach only calculates a phase velocity, a phase volume frac-
tion, and overall stresses associated with the average behavior of
an ensemble of phase particles in each finite volume in the CFD
grid. Thus the Eulerian approach innately involves averaging of
some sort, which implies more modeling.

3 Simulation Overview

3.1 Governing Equation. The model used for flow simula-
tion solves the conservation equations for mass �or continuity� and
momentum. The turbulence in the system is solved through addi-
tional transport equations. Navier–Stokes equations for incom-
pressible flows along with appropriate turbulence model are
adopted for flow predictions. Under steady-state conditions, the
equations for mass and momentum in a general form are as fol-
lows:

� . �v = 0 �1�

� . ��vv� = − �p + � . ��̄� + �g �2�

�̄ = �effective���v� −
2

3
� . �vI�

�effective = � + �t �3�

3.1.1 The Standard k−� Model. The standard k−� model is a
semi-empirical model based on model transport equations for the
turbulent kinetic energy �k� and turbulent dissipation rate ��� that
are given by

���k�
�t

+
���kui�

�xi
=

�

�xj
���� +

�t

�k
� �k

�xj
�� + Gk − �� �4�

�����
�t

+
����ui�

�xi
=

�

�xj
���� +

�t

��
� �k

�xj
�� − C1�

�

k
�Gk� − C2�

�2

k

�5�

Gk = − ui�uj�
�ui

�xj
�6�

The “eddy” or turbulent viscosity, �t, defined in Eqs. �2� and �3�
can be computed by combining k and � as follows:

�t = �C�

k2

�
�7�

The model constants C1�, C2�, C�, �k, and �� were assumed to
have the following values: ��=1.3, �k=1.0, C2�=1.92, C1�

=1.44. For further details about k−� model, see Refs. �48,49�.

3.1.2 RSM. For steady-state, the RSM relies on the following
transport equations for the Reynolds stresses:

�

�t
��ui�uj�� +

�

�xk
��uk�ui�uj�� = Pij + Fij + DTij + �ij − �ij �8�

Pij�stress production� = − ��ui�uk�
�uj

�xk
+ uj�uk�

�ui

�xk
� �9�

Fij�rotation production� = − 2�	k�uj�um� �ikm + ui�um� � jkm�
�10�

Journal of Applied Mechanics NOVEMBER 2009, Vol. 76 / 061005-3

Downloaded 04 May 2010 to 171.66.16.45. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



DT,ij�turbulent diffusion� = −
�

�xk
��ui�uj�uk�� + �p�
kjui� + 
ikuj���

�11�

�ij�pressure strain� = � �ui�

�xj
+

�uj�

�xi

� �12�

�ij�dissipation� = − 2�
�ui�

�xk

�uj�

�xk
�13�

For further details refer to Ref. �49�.

3.1.3 Multiphase Model. The air-core is modeled with the
VOF model. The fraction of fluid in each cell is defined as �p. The
transport equations for the air/water interface are defined in Eqs.
�14� and �15�. The VOF model locates the interface between air
and fluid depending on the value of �p, which varies between 0
and 1. The model equations are

��P

�t
+ �P

�ui

�xi
= 0 �14�

���ui�
�t

+
���uiuj�

�xj
= −

�p

�xj
+

�

�xj
��� �ui

�xj
+

�uj

�xi
�� + �gi �15�

Based on the local value of �p, the appropriate properties and
variables will be assigned to each control volume within the do-
main. For more details, see Ref. �50�.

3.1.4 Mathematical Modeling of Particle Trajectory. Predic-
tion of solid separation in the hydrocyclone requires two addi-
tional modeling concepts beyond the basic CFD. They are the
drag force acting on the particle and the diffusion of particles due
to fluid turbulence. The movement of a particle is computed by
Lagrangian tracking of particles upon the Eulerian continuous-
phase predictions �Fig. 2�.

The force balance on the particle, written in a Lagrangian ref-
erence frame, is a balance between drag, gravity, buoyancy, lift,
and centrifugal forces, given as

�d�d
dVd

dt
= FB + FS �16�

where �d=4
a3 /3 is the particle volume.
The only body force that we consider here is the gravity. There-

fore,

FB = �d�dg �17�
In this case the surface forces acting up on the particle are

FS = FL + FD + FM + FP �18�

FP is the action of the pressure gradient:

FP = �c�d�DVc

Dt
− g� �19�

FM denotes the added mass:

FM = − CM�c�d
D

Dt
�Vd − Vc� �20�

where Ca=1 /2 is the added-mass coefficient of a sphere in an
inviscid fluid.

FD is the drag:

FD = − �1/2��cCD
a2�Vd − Vc�	Vd − Vc	 �21�

where CD=Cd�Red� denotes the drag coefficient, which depends
on the Reynolds number of the particle Red=2a	Vd−Vc	 /�c,
where the value of Cd for a wide range of Reynolds numbers is
obtained from correlations given in Ref. �51�.

FL is the lift force, which is given by Auton �52�.

FL = CL�c��Vc − Vd� � Ω �22�

where Ω=��Vc and CL=1 /2 is the lift coefficient, see Ref.
�52�.

By writing �=�d /�c, one obtains

dVd

dt
=

1 + CM

� + CM

DVc

Dt
−

1 − �

� + CM
g −

3

8

CD

a�� + CM�
�Vd − Vc�	Vd − Vc	

−
CL

� + CM
�Vd − Vc� � Ω �23�

3.1.5 Two-Way Coupling Model. As the trajectory of a particle
is computed, track of the momentum gained or lost by the particle
stream has been kept in which these quantities can be incorporated
in the subsequent continuous-phase calculations. Thus, while the
continuous phase always impacts the discrete phase, it is possible
to incorporate the effect of the discrete phase trajectories on the
continuum. This two-way coupling is accomplished by alternately
solving the discrete and continuous-phase equations until the so-
lutions in both phases have stopped changing. For more details
See Ref. �53�.

The momentum transfer from the continuous phase to the dis-
crete phase is computed by examining the change in momentum
of a particle as it passes through each control volume in the
model. This momentum change is computed as

F = 
�18�CD Re

�PdP
2 24

�uP − u� + Fother�ṁP�t �24�

Re is the relative Reynolds number, ṁp defied as mass flow rate
particles, and Fother would be the other interaction forces. This
momentum exchange appears as a momentum sink in the
continuous-phase momentum balance in any subsequent calcula-
tions of the continuous-phase flow field. Particle concentration
effects have been influenced as mass transfer from a cell to an-
other using a concentration coefficient in continuity equation.

3.2 Description and Geometry of Hydrocyclone Simulated.
Hsieh’s �36� experimental results were used to validate the simu-
lation of velocity profiles. In this study, a single-channel dual-
beam, 35 m W He–Ne laser-Doppler velocity meter was used.
Since the air core blocked the scattered light as it passed through
the liquid/air interface, the backscatter alignment was chosen. The
frequency shifter permitted the detection of flow direction, as well
as the measurement of low velocity flow. At every location, 1024
data points were collected and the average velocity and turbulence
intensity was recorded. Also, the experimental results of
Narasimha et al. �17� were used to validate the simulation of
particle-size classification. The particle-size classification experi-
ment was conducted in a standard sump-pump recirculation sys-
tem. A diluted sand-water mixture was prepared and pumped
through the same 100 mm hydrocyclone. Both underflow and

Fig. 2 Velocity components in hydrocyclone
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overflow streams were sampled, and the size distribution was de-
termined by a Microtrac particle-size analyzer. The experimental
data of Udaya et al. �54� have been used in surveying the one-way
and two-way coupling methods performance. Feed slurry consist-
ing of flyash material at different solids consistency was pumped
into the cyclone body through the pipeline connected to the pump.
The other end of the pipeline was connected to the inlet opening
of hydrocyclone in study. The pressure drop inside the cyclone
was maintained at required level with the help of by-pass arrange-
ment actuated through a control valve on the pipeline. The pres-
sure drop in the cyclone was measured with the help of a dia-
phragm type pressure gauge fitted near the feed inlet. The
hydrocyclone was positioned upright above the slurry tank.

The dimensions of the 75 mm, 100 mm, and 50 mm hydrocy-
clone used in the experimental work are shown in Table 1.

Cyclone 1 is the Hsieh �36� base case to validate velocity dis-
tribution, cyclone 2 is the base case of Narasimha et al. �17� to
validate and study the separation effectiveness, and cyclone 3 is
the base case of Udaya et al. �54�, which has been used in com-
parison the one-way and two-way coupling methods.

3.3 Simulation. The simulations carried out on hydrocyclone
were assumed to be operating with an air core. Solution of the
model governing equations has been carried out by using the FLU-

ENT code. The Cartesian coordinate system was used for numeri-
cal simulations. Flow simulation was carried out using a 3D
double precision, steady state, and segregated solver. In this
method, the governing Navier–Stokes equations are solved se-
quentially using iterative methods until the defined values of con-
vergence are met.

A velocity inlet boundary condition was applied at the inlet and
the overflow and underflow used pressure outlet boundary condi-
tions with an air back-flow volume fraction of one. The feed air
volume fraction was set to zero. The physical constants of the
liquid primary phase were set to those of water; the second phase
constants were those of air.

Initially, the properties of the water were used along with the
pressure and face mass fluxes for calculating the momentum equa-
tions and further update the velocity field. Pressure staggered op-
tion �PRESTO�, a pressure interpolation scheme that was reported
to be useful for predicting highly swirling flow characteristics
prevailing inside the cyclone body, was adopted. For turbulence
calculations k−�, RSM was independently used to evaluate the
comparative simulation results. To obtain the pressure field inside
the system, semi-implicit pressure linked equations algorithm
�SIMPLE� scheme, which uses a combination of continuity and
momentum equations to derive an equation for pressure, was
used. Interpolation of field variables from cell centers to faces of
the control volumes was opted with higher-order quadratic up-
wind interpolation �QUICK� spatial discretization scheme as it
was reported to be useful for swirling flows. Simulations were
carried out for about 10,000 incremental steps where in general a
preset value of convergence criteria of 1�10−6 was achieved.

The following strategy was evolved because it could obtain,
with reasonable reliability, a case study with steady flow and a
stable air core. Other approaches were tried but the cases invari-
ably diverged:

1. The case was initialized with a cyclone full of water with the
backflow air volume fraction set to zero on overflow and
underflow boundary conditions.

2. The case was run using the steady solver and the standard
k-1 model for approximately 200 iterations.

3. The DRSM with the linear pressure strain �LPS� option was
then enabled and the case ran for about 25 iterations using
the steady solver and then the unsteady solver �fixed time
step� was enabled and the simulation was ran as a time in-

Fig. 3 One of the used meshes in CFD calculations

Fig. 4 Predicted versus experimental tangential velocities

Fig. 5 Predicted versus experimental axial velocities at 0 deg

Table 1 Design details of 75 and 100 mm hydrocyclone

Dimensions
Cyclone

Hsieh
Cyclone

Narasimha
Cyclone
Udaya

Cyclone diameter, mm 75 100 50
Cylindrical length, mm 75 85 85
Vortex finder diameter, mm 25 35 14.3
Vortex finder length, mm 50 50 50
Feed inlet dimensions, mm 25�20 25�12.5 7�7
Cone angle, deg 20 20 10
Spigot diameter, mm 12.5 10 3.2
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tegration until a central axial core of negative pressure
formed, which led to a reversed flow on the overflow and
underflow boundary conditions.

4. The back flow air volume fraction on both the overflow and
underflow boundary conditions was then set to 1 and the
simulation was run using the unsteady solver until the air
core was fully developed and overflow and underflow mass
flow rates matched the feed flow rate. The steady case study
using DRSM/LPS/VOF was saved as a base case and was
used as the starting case for other case studies using other
model options.

The methodology �steps �1�–�4�� does not realistically represent
the actual dynamics of air-core development because in reality the

back flow air volume fraction is 1 from start up. However, pertur-
bations of the final steady cases always saw the case stabilize back
to the same flow split and velocities and hence the predictions
should be independent on how the case was first evolved.

For achieving the particle separation behavior inside the cy-
clone, discrete phase modeling �DPM� technique was adopted.
This method simulates the particle trajectory in a Lagrangian
frame of reference. In slurries with dilute concentrations of solids
�particle concentration below 10% by weight, see Ref. �55��, par-
ticle distribution behavior can be simulated using Lagrangian par-
ticle tracking approach. Thus in the present study particle tracking
is carried out using the above methodology. Stochastic tracking
model was adopted for the dispersion of particles due to turbu-
lence in the primary phase. The discrete phase formulation used a

Fig. 6 Predicted versus experimental axial velocities at 90 deg Fig. 7 Flow injection area

Fig. 8 Flow filed: „a… flow path lines, „b… downward velocity field, and „c… upward velocity field
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fourth-order Runge–Kutta scheme to obtain the numerical solu-
tion of the differential equations. Here, two methods that contain
one-way and or two-way coupling have been used. In low particle
concentration, one-way coupling can be used while it is better to
use two-way at higher particle concentration. One-way coupling
contains the assumption that the second phase is sufficiently di-
luted that particle-particle interactions and the effects of the par-
ticle volume fraction on the primary phase are negligible. In two-
way coupling, particle effects on continues phase are be in
accounted using appropriate source terms in continuity and mo-
mentum equations.

3.4 Meshing Scheme. Hydrocyclones truly cannot be mod-
eled in a 2D plane due to nonaxisymmetric nature at the feed inlet
opening. Earlier reports also indicated that the results using a 3D
model are better matching with the experimental data compared
with the results with axisymmetric geometry. The present compu-
tational model is based on 3D geometry. Triangular mesh, which
can fit into small acute angles in the geometry, is used to mesh the
face that joins the inlet to the cylindrical cyclone body. This tri-
angular mesh is then extruded in the vertical direction to give rise
to wedge shaped control volumes in the tangential inlet region.
The rest of the cyclone is meshed using unstructured hexahedral
mesh, which is known to be less diffusive compared with other
types of meshes such as tetrahedral. A boundary layer mesh is
generated adjacent to the outer wall of the cyclone. In order to
capture the low-pressure central air-core, block-structured mesh is
generated in that region. Additional care is taken to generate mesh
near the spigot region where maximum aspect ratio is restricted to
about 10. This is important to capture the back flow through
spigot opening. Grid independence study was carried out with five
different mesh densities with mesh sizes varying from 750,000 to
2,000,000. Water distribution studies have indicated that better
predictions are obtained at higher mesh densities. A mesh density
of 1,500,000 cells, as displayed in Fig. 3, is optimal for good
predictions and reasonable computational time for simulations.

4 Results and Discussion

4.1 Model Validations. It is necessary to validate the model
before its application for numerical experiment. Figures 4–6 show
the experimental and predicted tangential and axial velocities for a

cylindrical section of the hydrocyclone. In the experiment �24�,
the tangential velocity component was measured at one angle �0
deg�, while the axial velocity component was measured at two
angles �0 deg and 90 deg�, as shown in Figs. 5 and 6. The simu-
lation results predicted with RSM with air-core model are in good
agreement with the experimental results, particularly for the axial
velocities. Moreover, the comparison between the experimental
results �17� and numerical results has also been made for other
variables in the hydrocyclone, such as the cut size shown in Figs.
8–11.

4.2 Flow Patterns and Particle Size Classification. In order
to establish the swirling flow field, fluid tangentially injected in
cylindrical part �Fig. 7�. Induced swirling flow field moved to
down while after passing certain distance, an internal vortex flow
has been shaped, which moved toward up. Figures 8�a�–8�c� sepa-
rately represent areas in which flow tends to move up and or
down. In swirling motion, due to rotational movement, pressure
distribution increased in radial direction. Hence a low-pressure
area has been made in cyclone central area. This results in reverse
flow at both exit areas— underflow and overflow—which lead to
produce throughout and or small air cores �Fig. 9�.

Fig. 9 „a… Pressure field, „b… shaping the air core via air suc-
tion, and „c… completed air core

Fig. 10 Some obtained trajectory of particles, leaving the hy-
drocyclone: „up… from under flow and „down… from over flow
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The particle-size classification was simulated by injecting a
number of particles of each size class over the cross section of the
inlet and tracking their exit via the underflow �Fig. 10�a�� or over-
flow streams �Fig. 10�b��. The outlet stream in which each particle
was reported was noted and the separation characteristics of the
cyclone were determined. In one-way coupling method, each run
was repeated five times and the average value was noted. During
each run, 1500 particles of same size were injected simulta-
neously. The density of the material is maintained constant at
2600 kg /m3, which corresponds to the density of sand. Simula-
tion runs were repeated for sand particles of different sizes. These
data were then used to generate the partition curve of the cyclone.
These calculations are independent of the velocity field calcula-
tion. Since the volume percentage of solids in the feed was less
the 5%, there is no need for momentum coupling between the
solid phase and water phase. Figures 11–13 demonstrate that the
separation of particles by size in the hydrocyclone is closely
tracked by the RSM calculations. For high solid contents, one
would have to resort to multiphase-flow models, which are not yet
established �56�. Particle densities were 2300 in two-way coupling
method, which their inlet volume fraction was fixed on 10%. Par-
ticles entered the hydrocyclone via unsteady treat, which has been
continued to obtain steady-state condition �equals particle number
at the inlet and outlet�. Each discrete phase solution has been done
after one continuum phase solution and each step of particle
entering has been done after 50 iterations of continuum phase
solution.

4.3 Comparison of Separation Efficiency Among Various
CFD Models and Experimental Results

4.3.1 Study of Various Turbulence Models Together With Air
Core. Simulation of flow fields in hydrocyclone without consider-
ing air core and by using k−� or RNG k−� turbulence models has
been performed by many researchers �13–17�. In the present
work, flow field in hydrocyclone was simulated by using the k
−�, RSM without air core, and RSM with air-core models. The
comparison of the simulation results with respect to the experi-
mental and k−� models results, which have been presented by
Narasimha et al. �17�, shows that the separation efficiency pre-
dicted with k−� model are in good agreement with that obtained
by Narasimha et al. �17�.

Considering the RSM and k−� turbulence models �shown in
Figs. 11–13�, it can be seen that the RSM is more precise than k
−� model. This is due to observing isotropic condition for eddy
viscosity in k−� model, since eddy viscosity is anisotropic in
turbulent swirling flow. Also, with comparison between the simu-
lations that consider the air core and simulations that ignore it, it
is certain that including the air core makes the numerical results
closer to the experimental results.

It is the result of the decreased accuracy of some turbulence
models for an increased turbulence intensity and of the increased
diameter of air core that increases the effect of it on the continu-
ous flow field. Consequently, the use of RSM with air core will be

Fig. 12 Comparison of separation efficiency at 8.2 m/s inlet
velocity

Fig. 14 Comparison of separation efficiency by one-way and
two-way coupling methods

Fig. 11 Comparison of separation efficiency at 5.8 m/s inlet
velocity

Fig. 13 Comparison of separation efficiency at 10.6 m/s inlet
velocity
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more reasonable at high inlet velocities. Table 2 shows the results
of fluid splits predicted by CFD modeling and their deviation
compare with experimental data.

4.3.2 Comparison of One-Way and Two-Way Coupling
Methods. In order to study the discreet phase effects on the con-
tinuous phase and increase the simulation accuracy in study a
cyclone with 10% inlet volume fraction, both one-way and two-
way coupling methods have been utilized, which results have been
compared with experimental data. In Fig. 14, clearly, it can be
seen that results by two-way method be in closer criteria with
experimental data. Because most of particles with large diameter
tend to exit from the cone apex, a high thick region of particles
established there. This particle closeness changes the flow division
ratios as flow from the apex has been decreased while it carried
less particles. Also the flow division area moved up and so the
effective separation length forced to decrease which causes to
lessen the separation efficiency. Because these subjects are not to
be in account for one-way coupling, separation efficiency by this
method evaluated in a larger criteria. Whereas in two-way
method, particle interaction has been accounted, which clearly
affects the underflow flow rate so more accurate results have been
expected, which is clearly shown in Table 3.

5 Conclusion
In order to understand the effects of operation conditions such

as inlet velocity and particle size on hydrocyclone performance,
the CFD model proposed in the current work was used to quantify
the flow and particle fields in hydrocyclones. The k−� model
without considering air core and Reynolds stress model with and
without considering air core was used to model continuous-phase
flow in hydrocyclone. On this basis, a stochastic Lagrangian
model was used to track the particles in the cyclones. For model-
ing the discontinuous phase, discrete phase model in one-way and
two-way coupling modes has been utilized.

Eventually, by using the volume of fluid multiphase model and
RSM, which observe air core and anisotropic turbulent flow, re-
spectively, the prediction results will be closer to the experimental
results. Also, in studied high volume fractions, two-way coupling
method represents more accurate results compared with one way.

Nomenclature
C1�, C2�, C�

k−� � model constants

CL � lift coefficient
CD � drag coefficient
FB � body forces
Fs � surface forces
Gk � generation of turbulent kinetic energy due to

the mean velocity gradients
g � gravitational force
k � turbulent kinetic energy
v � velocity component

Vd � particle velocity
P � pressure

ui� � velocity fluctuation component
xi � dimensional component

Greek Symbols
� � density

	 � angular velocity
�p � volume fraction
�c � kinematic viscosity

�k, �� � turbulent Prandtl numbers for k and �,
respectively

�̄ � stress tensor
�effective � effective viscosity

� � molecular viscosity of the fluid
�t � turbulent eddy viscosity
� � viscous dissipation rate
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Flow of a Biomagnetic
Visco-Elastic Fluid in a Channel
With Stretching Walls
The flow of a visco-elastic fluid in a channel with stretching walls under the action of an
externally applied magnetic field generated by a magnetic dipole was studied in this
paper. As per an experimental report, the variation in magnetization M of the fluid with
temperature T was approximated as a linear equation of state M �K1T, where K1 is a
constant called the pyromagnetic coefficient. In this investigation the model used is that
of Walter’s liquid B fluid, which includes the effect of fluid visco-elasticity. By introducing
appropriate nondimensional variables, the problem is reduced to solving a coupled non-
linear system of ordinary differential equations subject to a set of boundary conditions.
The problem is solved by developing a suitable numerical technique based on finite
difference approach. Computational results concerning the variation in the velocity, pres-
sure and temperature fields, skin friction and the rate of heat transfer with magnetic field
strength, Prandtl number, and blood visco-elasticity are presented graphically. The re-
sults presented reveal that the velocity of blood in the normal physiological state can be
lowered by applying a magnetic field of sufficient intensity. The study bears the promise
of important applications in controlling the flow of blood during surgery and also during
treatment of cancer by therapeutic means when it involves magnetic drug targeting
(hyperthemia). �DOI: 10.1115/1.3130448�

Keywords: biomagnetic fluid, non-Newtonian model, visco-elasticity, stretching walls

1 Introduction
The study of biomagnetic fluid dynamics �BFD� has attracted

the interest of many researchers in view of its important applica-
tions in bio-engineering and biomedical technology. The primary
object of this emerging area of fluid dynamics is to investigate the
dynamical behavior of biological fluids in the presence of mag-
netic fields generated by the action of magnetic dipoles. Higashi et
al. �1� reported that hemoglobin is a form of iron oxide. Since
blood is a suspension of erythrocytes in an aqueous solution called
plasma and since erythrocytes contain hemoglobin molecules,
blood is a characteristic example of a biomagnetic fluid. They �1�
further suggested that the erythrocytes orient their disk plane par-
allel to the magnetic field. Pauling and Cryell �2� observed that
blood, when oxygenated, possesses the properties of a diamag-
netic material and when deoxygenated, it exhibits the properties of
a paramagnetic material with magnetic susceptibility equal to
3.5�10−6.

Mathematical modeling of biomagnetic fluid flow is performed
by using the principles of ferrohydrodynamics �FHD�. In this for-
mulation, blood is considered as an electrically nonconducting
magnetic fluid, and it is assumed that the flow is affected by the
magnetization of the fluid. This formulation is different from that
of magnetohydrodynamics �MHD�, which deals with electrically
conducting fluids. In the case of a magnetohydrodynamic flow, the
force that comes into the picture is the so called Lorentz force,
where the effects of magnetization and polarization are ignored. In
the case of blood, it was reported that Lorentz force is sufficiently
small, in comparison to the effects of magnetization and polariza-
tion �3–6�. Haik et al. �3� developed a magnetic device that sepa-
rates red blood cells from the whole blood on a continuous basis.

The importance of the device lies in the fact that certain cancer
treatments require separation of white cells from the whole blood.
In their experimental study, the magnetic field was varied from
−5 T to +5 T. Haik et al. �7� also carried out another study on
human blood at the National High Magnetic Field Laboratory.
They reported that there is a marked reduction in the flow rate of
blood as the magnetic field strength is increased. The experimen-
tal studies of Haik et al. �4� further shows that for an applied
magnetic field of strength up to 8 T, the flow rate of human blood
in a tube is reduced by 30%. The magnetic particles and magnets
were used in the development of new therapeutic and clinical
techniques. Perry �8� proposed the use of magnetic fluids as a
method for reducing blood flow during surgeries, the basic pur-
pose being to maintain a magnetic field permanently across a vein
or an artery in the vicinity of a surgical procedure. Hiergeist et al.
�9� developed an experimental setup for applying magnetic ferrof-
luids in the treatment of hyperthemia. Voltairas et al. �10� intro-
duced the concept of magnetic drug targeting. It may be men-
tioned that efficient drug targeting plays a vital role for the
medical treatment of various cardiovascular diseases such as
stenosis and thrombosis.

A couple of studies in the field of biomagnetic fluids were made
by Tzirtzilakis and co-workers �11–15�. Tzirtzilakis and Kafous-
sias �11� considered the flow of a heated ferrofluid over a linearly
stretching sheet under the action of a magnetic field generated by
the presence of a magnetic dipole. This study indicates that the
temperature of a biomagnetic fluid increases with an increase in
Prandtl number, as well as ferromagnetic induction. They reported
these observations on the basis of their computational study that
made use of the physical data for human blood. Loukopoulas and
Tzirtzilakis �12� investigated the problem of biomagnetic channel
flow under the influence of an applied magnetic field. In their
study, they considered that magnetization of the fluid varies lin-
early with temperature, as well as with the intensity of the mag-
netic field. The results presented by them indicate that the local
skin friction and the rate of heat transfer increase with the increase
in the magnetic field strength. Papadopoulos and Tzirtzilakis �13�
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conducted a study of the laminar incompressible fully developed
biomagnetic flow of blood in a curved square duct subject to the
action of an applied magnetic field. Recently Tzirtzilakis et al.
�14� dealt with a problem of turbulent biomagnetic fluid flow in a
rectangular channel under the action of a localized magnetic field.
Their study shows that the flow field is mainly affected by the
formation of two vortices in the vicinity of the area where the
magnetic field is applied. They formulated a model by using the
principles of both FHD and MHD, that is, by considering the
effects of magnetization and that of electrical conductivity of
blood. The concept of this mathematical model of BFD was pro-
posed earlier in Ref. �15�. Andersson and Valnes �16� studied the
flow of a heated ferrofluid over a stretching sheet in the presence
of a magnetic dipole. They observed that the primary effect of the
magnetic field is to decelerate the fluid motion, as a result of
which the skin friction of the sheet increases. It may, however, be
mentioned that all the studies referred to above are restricted to
the consideration of homogeneous Newtonian fluids.

Misra and Shit �17� investigated the flow and heat transfer of a
visco-elastic electrically conducting fluid under the action of a
magnetic field. Misra et al. �18,19� also studied the steady flow of
an incompressible second-grade electrically conducting fluid in a
channel permeated by a uniform transverse magnetic field. All the
said studies performed by Misra et al. �17–19� are motivated to-
ward different possible applications in the field of biomedical en-
gineering. MHD flow of a viscous fluid over a linearly stretching
sheet was studied by several investigators by considering visco-
elastic non-Newtonian models �20–24�. Some similar studies for
power law fluids were also reported in scientific literatures
�25–27�.

Exchange of heat take place between living tissues and blood in
the circulatory system. The extent of heat exchange, however,
depends on the geometry of the vessel through which blood flows.
It is reported in Ref. �28� that blood flow affects the thermal
response of living tissues. Craciunescu and Clegg �29� studied the
effect of oscillatory flow upon the resulting temperature distribu-
tion of blood and convective heat transfer in rigid vessels. The
importance of different types of blood vessels in the process of
bioheat transfer was intensively studied by Weinbaun et al. �30�.

Of concern in the present investigation is a problem of blood
flow through a channel with stretching walls under the action of a
localized magnetic field. Blood is treated here as a biomagnetic
fluid obeying the Walter’s liquid B model that takes care of the
non-Newtonian visco-elastic behavior of blood. The problem is
first treated analytically and then suitable numerical techniques
were employed in order to derive the final solution of the problem.
For this purpose, a suitable iterative finite difference scheme was
developed. The results depicting the effects of magnetization and
blood visco-elasticity on velocity profile, skin friction, and the
rate of heat transfer at the channel wall were presented through

graphs/tables. The study bears the potential of significant applica-
tions in biomedical technologies such as controlling the blood
flow during surgery and also in the treatment of cancer that in-
volves drug targeting to the affected cells.

2 Mathematical Formulation of the Problem
Let us consider the two-dimensional viscous incompressible

flow of a biomagnetic fluid �e.g., blood� in a parallel plate channel
bounded by the planes y= �h in the presence of an applied mag-
netic field generated by a magnetic dipole. The flow is considered
to be driven by the stretching of the channel walls such that the
surface velocity of each wall is proportional to the axial coordi-
nate x �see Fig. 1�. The problem pertains to a situation where a
magnetic dipole is located at a distance a above the channel wall,
and the wall is kept at a constant temperature Tw.

The fluid under consideration is taken to be electrically noncon-
ducting and governed by Walter’s liquid B equations �31,32�:

�u

�x
+

�v
�y

= 0 �1�

��u
�u

�x
+ v

�u

�y
� = −

�p

�x
+ ��2u − k0��u

�

�x
+ v

�

�y
��2u −

�u

�x
�2u

−
�u

�y
�2v − 2� �u

�x

�2u

�x2 +
�v
�y

�2u

�y2

+ � �u

�y
+

�v
�x
� �2u

�x � y
	
 + �0M

�H

�x
�2�

��u
�v
�x

+ v
�v
�y
� = −

�p

�y
+ ��2v − k0��u

�

�x
+ v

�

�y
��2v −

�v
�x

�2u

−
�v
�y

�2v − 2� �u

�x

�2v
�x2 +

�v
�y

�2v
�y2

+ � �u

�y
+

�v
�x
� �2v

�x � y
	
 + �0M

�H

�y
�3�

�cp�u
�T

�x
+ v

�T

�y
� + �0T

�M

�T
�u

�H

�x
+ v

�H

�y
�

= k� �2T

�x2 +
�2T

�y2� + ��2� �u

�x
�2

+ 2� �v
�y
�2

+ � �v
�x

+
�u

�y
�2


− k0� �u

�y
� �

�y
�u

�u

�x
+ v

�u

�y
� �4�

The boundary conditions applicable to the flow problem may be
mathematically described as

Y

X

h

y=0

Vessel wall

O
Blood flow

a
Magnetic dipole

Fig. 1 Physical sketch of the problem
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�u

�y
= 0, v = 0,

�T

�y
= 0 at y = 0 �5�

u = cx, v = 0, T = Tw, p + 1
2��u2 + v2� = 0 at y = h

�6�

In the above equations u and v are the �dimensional� velocity
components of the fluid in x and y directions, respectively, p is the
pressure, � is the biomagnetic fluid density, � is the dynamic
viscosity, �0 is the magnetic permeability, cp is the specific heat at
constant pressure, k is the thermal conductivity, H is the magnetic
field strength, and k0 is the measure of the visco-elasticity of the
biomagnetic fluid. The terms �0M �H /�x and �0M �H /�y in the
right hand side of Eqs. �2� and �3�, respectively, represent the
component of magnetic force per unit volume. The second term
on the left hand side of the thermal energy equation �4� represents
the thermal power per unit volume due to magnetization that takes
place as an adiabatic process. It may be noted that during the
motion of a visco-elastic fluid, a certain amount of energy is
stored in the fluid as strain energy, while some portion of the
energy is lost due to viscous dissipation. The second and the third
terms on the right hand side of Eq. �4� represent the terms due to
viscous dissipation and strain energy, respectively.

The biomagnetic fluid flow is affected by the magnetic field
generated by the presence of a magnetic dipole, where the mag-
netic scalar potential is given by

� =
�

2�
·

x

x2 + �y − d�2 �7�

with d=a+h, and � being the magnetic field strength at the source
�0,d�.

The corresponding magnetic field H has the components
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Thus the magnitude of the magnetic field intensity H= �H� is given
by

H�x,y� = �Hx
2 + Hy

2 =
�

2�
·

1

x2 + �y − d�2 �10�

Hence

�H

�x
= −

�

2�

2x

�x2 + �y − d�2�2 = −
�

2�
·

2x

�y − d�4�1 + � x

y − d
�2
−2

= −
�

2�
·

2x

�y − d�4�1 −
2x2

�y − d�2 +
3x4

�y − d�4 − ¯

= −

�

2�
·

2x

�y − d�4 �neglecting x3 and higher powers of x�

�11�

Proceeding in a similar manner, we get

�H

�y
=

�
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· �−

2

�y − d�3 +
4x2

�y − d�5
 �12�

We consider a state of equilibrium. According to the principle of
FHD, the magnetization M is a function of temperature T. In the
present formulation, in conformity to the experimental observa-
tion reported in Ref. �33�, magnetization M is considered to vary
with temperature T linearly. Thus we write M =K1T, where K1 is a
constant called the pyromagnetic constant. Now we introduce the
following nondimensional variables:

	�
,�� = h2c
f��� �13�

P�
,�� =
p

c�
= − P1��� − 
2P2��� �14�

��
,�� =
T

Tw
= �1��� + 
2�2��� �15�


�x� =
x

h
�16�

��y� =
y

h
�17�

where 	�
 ,��, P�
 ,��, and ��
 ,�� are the stream function, pres-
sure, and temperature variables, respectively.

In terms of these dimensionless variables, the velocity compo-
nents u and v can be obtained by using the formulas

u =
�	

�y
= cxf���� �18�

v = −
�	

�x
= − chf��� �19�

Clearly u and v satisfy the continuity equation �1�. Substituting
Eqs. �13�–�19� into Eqs. �2�–�4� and then equating the coefficients
of 
 and 
2, we get the following set of ordinary differential equa-
tions:

f� + f f� − f�2 + K��f f iv − 2f�f� + f�2�� + 2P2 −
2B�1

�� − 
�4 = 0

�20�

P1� − f� − f f� − K�f f� − 3f�f�� −
2B�1

�� − 
�3 = 0 �21�

P2� −
2B�2

�� − 
�3 +
4B�1

�� − 
�5 = 0 �22�

�1� + Prf�1� −
2�B�1f

�� − 
�3 + 2�2 + 4�f�2 = 0 �23�

and

�2� − Pr�2f��2 − f�2�� −
2�Bf�2

�� − 
�3 + �B�1� 2f�

�� − 
�4 +
4f

�� − 
�5

+ �f�2 − �K�f�f�2 − f f�f�� = 0, �24�

while the boundary conditions �5� and �6� get transformed to

f = f� = 0, �1� = �2� = 0 at � = 0 �25�

f = 0, f� = �1 = 1, �2 = 0, P1 = 0, P2 =
1

2
at � = 1

�26�

The five nondimensional parameters that appear in the Eqs.
�20�–�24� are defined by

Pr =
�cp

k
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c�2

�kTw
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�2
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d

h

K =
k0c

�

3 Perturbation Analysis
Since Eq. �20� is highly nonlinear and the visco-elastic param-

eter K is considered to be small, in order to solve the Eq. �20�, we
expand f in a power series in K as

f��� = f0��� + Kf1��� + K2f2��� + ¯ �27�

K being taken as the perturbation parameter. Substituting Eq. �27�
into Eq. �20�, equating like powers of K and ignoring squares and
higher powers, we obtain

f0� + f0f0� − f0�
2 −

2B�1

�� − 
�4 + 2P2 = 0 �28�

and

f1� + f0f1� − 2f0�f1� + f0�f1 = 2f0�f0� − f0�
2 − f0f0

iv �29�
Further, using Eq. �27� in Eqs. �25� and �26�, the boundary con-
ditions for f0 and f1 are found as

f0 = f1 = 0, f0� = f1� = 0 at � = 0 �30�
and

f0 = f1 = 0, f0� = 1, f1� = 0 at � = 1 �31�
In Sec. 4, we will develop a numerical scheme for solving Eqs.
�28� and �29� subject to the boundary conditions �30� and �31�.

4 Numerical Method
The set of coupled differential equations �20�–�24� along with

the boundary conditions �25� and �26� forms a nonlinear two point
boundary value problem. To solve this we developed a suitable
computational procedure. According to Eq. �14�, P=−P1−
2P2. It
is noted that the pressure variable P1 appears only in Eq. �21�,
while Eqs. �20� and �22�–�24� are all independent of P1. This is
why one can keep P1 away from any further consideration, in case
the object is to study the velocity field.

When the ferrohydrodynamic parameter B=0 and also the
visco-elastic parameter K=0, the flow problem becomes decou-
pled from the thermal energy problem. In this case, the analytical
solution for P1 was put forward by Crane �34�. Following New-
ton’s method of linearization, we now proceed to solve the non-
linear equation �28� subject to the boundary conditions �30� and
�31�. Substituting f0�=F in Eqs. �28�, �30�, and �31�, we get

F� + f0F� − F2 =
2B�1

�� − 
�4 − 2P2 �32�

F��0� = 0, F�1� = 1 �33�
Using central difference scheme for the derivatives with respect to
�, we can write

�F��i =
Fi+1 − Fi−1

2��
+ O�����2� �34�

and

�F��i =
Fi+1 − 2Fi + Fi−1

����2 + O�����2� �35�

where i is the grid index in �-direction with �i= i��; i
=0,1 ,2 , . . . ,m�=1 /���, and �� is the increment along the �-axis.
When the values of the dependent variables at the nth iteration are
known, the corresponding values of these variables at the next
iteration are obtained by using the relation

Fi
n+1 = Fi

n + ��Fi�n �36�

where ��Fi�n represents the error at the nth iteration, i
=0,1 ,2 , . . . ,m. Here it is worthwhile to mention that the error
��Fi�n at the boundary is zero because the values of Fi at the
boundary are known.

Since Eq. �20� is highly nonlinear, it had to be solved for f by
using the numerical solution of Eqs. �28� and �29�, together with
the use of Eq. �27�. After having determined f numerically, we
solved Eqs. �22�–�24� subject to the boundary conditions �25� and
�26� using a suitable finite difference scheme that we have devel-
oped for this purpose.

5 Results and Discussion
We have determined theoretical estimates of the effects of the

externally applied magnetic field generated by the magnetic dipole
and also that of blood visco-elasticity on velocity, temperature,
pressure, skin friction, and the rate of heat transfer in the flow of
an electrically nonconducting fluid in a channel whose walls are
stretchable.

As an illustrative example, we take up the case where the fluid
is the representative of blood for which �=1050 kg m−3 and �
=3.2�10−3 kg m−1 s−1. The numerical investigation was carried
out with an aim to examine the variations of various quantities
�relevant to the present study� for different cases, by using the
data: B in unit of T=0,2 ,3 ,4 ,5 ,6; K=0.0,0.005,0.01,0.05; 

=2.0,2.5,3.0; and the Prandtl number Pr=7,14,21; �=0.01
�11,16,23�, where �=0.01 corresponds to a situation in which the
source term due to viscous dissipation in the energy equation �4�
is of marginal importance compared with the conduction and con-
vection terms. The computational work was carried out by taking
��=0.0125 with 81 grid points. It was noted that further reduction
in the value of �� does not bring about any significant change in
the computed values.

The variation in the dimensionless velocity components
f�����=u /cx� and v=−f��� is shown in Figs. 2–7 for a given cross
section of the channel. It reveals from Figs. 2 and 4 that in the
vicinity of the central line of the channel, the axial velocity u
decreases as the value of the ferromagnetic interaction parameter
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B increases. It is, however, found that the velocity u in the axial
direction of the channel increases in the vicinity of the channel
wall. Figure 2 further reveals that u vanishes at different locations
of the channel height for different values of B, and the point at
which it vanishes can be shifted to the origin or eliminated alto-
gether by applying a sufficiently strong magnetic field. Figure 4
indicates that u increases at the central line of the channel with the
increase in the Prandtl number Pr but the trend is reversed near the
channel wall.

It was shown in Ref. �4� that under the action of a magnetic
field due to a magnetic dipole, the blood cells orient their disk
plane parallel to the applied magnetic field. This orientation of

blood cells creates an additional viscosity, which in turn causes a
reduction in blood velocity. Our results presented in Fig. 2 agree
with Ref. �4� to the extent that in the vicinity of the central line of
the channel, the axial velocity u decreases with the increase in
ferromagnetic interaction B.

Figure 6 gives the corresponding results for various locations of
the magnetic dipole along the height of the channel wall. It may
be noted that the axial velocity near the channel wall decreases
with increasing distance 
. Figures 3, 5, and 7 illustrate the varia-
tion in the velocity normal to the channel wall. Figures 5 and 7
show that the normal velocity decreases with the increase in
Prandtl number, as well as the distance, while from Fig. 3 we find
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that the normal velocity initially increases and after certain height
of the channel, it decreases monotonically with the increase in the
value of the ferromagnetic interaction parameter B.

Figures 8 and 9 depict some characteristic temperature profiles
�1��� for different values of the ferromagnetic interaction param-
eter B and Prandtl number Pr, respectively. It is observed from
Fig. 8 that the temperature increases with the increase in ferro-
magnetic interaction. Figure 9 indicates that temperature also in-
creases as the Prandtl number increases. Figures 10 and 11 give
the pressure distribution for different values of B and Pr. From
these two figures we find that the pressure decreases as the mag-
netic parameter B as well as the Prandtl number Pr increases.

The results presented in Fig. 8 have an important application in
treatment of tumors/cancer therapy because the objective of hy-
perthemia in cancer therapy is to raise the temperature of cancer-
ous tissues above a therapeutic value 42°C. When the temperature
of blood rises above 42°C, irreversible damage occurs in plasma
protein. Also the computational results presented in Fig. 10 are of
considerable interest in clinical treatment related to controlling the
blood pressure by the application of a magnetic field of sufficient
intensity.

Other important characteristics of the present study are the local
skin friction coefficient and the local rate of heat transfer defined
as
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Cfx
=

2�w

��cx�2 = −
2f��1�
�Re

and

Nu =
x

Tw
·
�T

�y
�y=h = ��1��1� + 
2�2��1���Re

where �w=−���u /�y�y=h, f��1� is the local skin friction coeffi-
cient, and ��1��1�+
2�2��1�� is the dimensionless heat transfer at
the wall. The rate of heat transfer at the channel wall can be
measured by the ratio ���1�=�1��1� / ��1��1��B=0 because in the ab-
sence of ferromagnetic interaction, the pressure P2 reduces to
zero.

Table 1 gives the distribution of the local skin friction coeffi-
cient for different values of the parameters B, Pr, 
, and K. From
this table, one may observe that the skin friction increases with the
increase in ferromagnetic interaction in a moderate range of val-
ues of the Prandtl number Pr. But when the Prandtl number is low,
the skin friction initially decreases up to a certain value of B
between 1 and 2, and then gradually increases with B. The skin
friction also increases when the Prandtl number Pr increases.
From the third row of Table 1, one may observe that for fixed
values of Pr, 
, and K, the skin friction coefficient increases with
the increase in B. However, it decreases with the increase in blood
visco-elasticity K when B�3 and the trend reverses when B�4.
The skin friction coefficient decreases as the distance from the
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Table 1 Distribution of local skin friction coefficient −f�„1…

Parameters B=0 B=1 B=2 B=4 B=5 B=6


=2.0 Pr=7 �77.395994 �179.52341 �133.0739 �76.94855 �49.39606 �21.38254
K=0.005 Pr=14 �77.395994 �66.54988 �38.00444 �9.70572 45.49459 72.14398

Pr=21 �77.395994 �34.73359 �5.76167 48.98430 74.81407 99.49153


=2.0 Pr=7 �82.046115 �181.91357 �139.54189 �82.18622 �53.27919 �24.546
K=0.05 Pr=14 �82.046115 �70.62743 �41.81759 18.85658 48.24579 77.06626

Pr=21 �82.046115 �36.97695 �6.67133 52.55596 80.65434 107.75107


=2.0 K=0.0 �76.87867 �34.48445 �5.70979 48.53943 74.09306 98.47642
Pr=14 K=0.005 �77.39599 �34.73359 �5.76167 48.98430 74.81407 99.49153

K=0.05 �82.046115 �36.97695 �6.67133 52.55596 80.65434 107.75107
K=0.1 �87.20932 �39.49470 �7.53375 55.61875 85.69259 115.02139

Pr=21 
=2.0 �76.87867 �34.48445 �5.70979 48.53943 74.09306 98.47642
K=0.0 
=2.5 �76.87867 �58.52331 �52.56325 �42.63779 �37.60269 �32.64152


=3.0 �76.87867 �62.29329 �59.92367 �55.18691 �52.81845 �50.38870

Table 2 Distribution of the heat transfer rate ��
„1…=�1�„1… / †�1�„1…‡B=0

B=0 B=2 B=3 B=4 B=5 B=6


=2.0 Pr=7 1.0 �530.6556 �662.32774 �736.00279 �775.26103 �804.66786
K=0.005 Pr=14 1.0 �709.57064 �726.56335 �731.68992 �732.37450 �733.57310

Pr=21 1.0 99.584556 96.688486 94.43694 92.295367 90.199851


=2.0 Pr=7 1.0 �422.1321 �535.22578 �590.46311 �624.04110 �644.91701
K=0.05 Pr=14 1.0 �512.08002 �532.88775 �537.76108 �537.94351 �538.02681

Pr=21 1.0 200.70255 195.44699 190.79503 186.23810 181.865284


=2.0 K=0.0 1.0 92.927687 90.243765 88.147436 86.158125 84.208094
Pr=21 K=0.005 1.0 99.584556 96.688486 94.436945 92.295367 90.199850

K=0.05 1.0 200.70255 195.44699 190.79503 186.23810 181.86528
K=0.1 1.0 1049.4293 1019.7875 994.18145 968.13026 944.88598

Pr=21 
=2.0 1.0 99.584556 96.688486 94.43694 92.295367 90.19985
K=0.005 
=2.5 1.0 17.062519 15.118195 13.527832 12.82493 12.34450


=3.0 1.0 9.132042 5.7278654 4.028502 3.011554 2.3477542
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channel wall increases. It is also important to note from Table 1
that when B=0, the skin friction is the same for all values of the
parameters Pr and 
. However, the magnitude of the skin friction
increases with the increase in the visco-elastic parameter K.

Table 2 gives the distribution of the heat transfer rate at the
channel wall for different values of the various physical param-
eters. It is worthwhile to observe that for any particular values of
Pr, K, and 
, the rate of heat transfer decreases gradually as the
ferromagnetic interaction increases. But the heat transfer rate in-
creases with the increase in visco-elastic parameter K as well as
with the Prandtl number Pr, while it decreases with distance �
�. It
may be noted that in a lower range of values of Pr �Pr�14�, the
heat transfer rate decreases with an increase in Prandtl number,
but when Pr�14, the trend is reversed. This observation is valid
only when the ferromagnetic parameter B�3. It may also be
noted that the heat transfer rate maintains a constant value, viz.,
1.0 in the absence of ferromagnetic induction.

6 Conclusions
Of concern in this paper was the flow of a biomagnetic visco-

elastic fluid �with special reference to blood� in a channel whose
walls are stretchable, under the action of a magnetic field gener-
ated by a magnetic dipole. All the numerical results presented in
Sec. 5 were computed for the flow of blood �as a representation of
biomagnetic fluid� and the use of experimental data for blood
reported in the existing literature was made in the computational
work. The results reported here correspond to a mathematical
model of BFD, which is based on the principles of FHD. An
attempt was made to validate our results by comparing them with
those presented in a previous work. Figure 12 shows very clearly
that the results of the present study are in good conformity to
those reported in Ref. �19�. The departure of the results of these
two studies may be attributed to the coupling of temperature and
velocity fields considered in the present study. In Fig. 12, the
results presented correspond to the case when there is no applied
magnetic field, both for Ref. �19� and for the present study. It is
worthwhile to point out here that the physics of the study reported
in Ref. �19� is identical to that of the present investigation. The
difference is that Ref. �19� considers the channel flow of a mag-
netohydrodynamic fluid, while the fluid considered in the present

study is a biomagnetic fluid. For the purpose of comparison, both
studies were reduced to the case where the magnetic parameter is
zero. It may be mentioned here that because of the variance of the
two studies, the different physical parameters involved in one are
different from those in the other, and comparison of the results for
nonvanishing values of B was not possible. However, the results
of Ref. �19� were compared with another previous study and the
conformity was reported. In the scientific literature, no other simi-
lar study is available for the purpose of comparison for nonzero
values of B.

The present analysis bears the potential to examine the complex
flow behavior of blood, under the influence of the five physical
parameters: B, Pr, K, 
, and �. The study reveals that the flow
reversal can be eliminated, and the temperature of the vessel wall
can be controlled by applying a magnetic field of sufficient
strength. It also provides the information that the temperature in-
creases gradually with the increase in ferromagnetic interaction.
This observation is of paramount clinical importance in the pro-
cess of hyperthemia �used in the treatment of cancer by therapeu-
tic procedures�.
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Appendix
In derivation of Eqs. �20�–�26�,
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Similarly,
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Also,
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2�2�� ,

�2T
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h2 ��1� + 
2�2�� and
�M

�T
= K1, since M = K1T

Substituting all these in Eqs. �2�–�6�, then equating the coeffi-
cients of 
 and 
2, and finally setting �=c�h2, we obtain Eqs.
�20�–�26�.
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Theory of Images in
Spherical-Layered Axisymmetric
Viscous Hydrodynamics
A spherical drop of viscosity ��1� and radius a1 is surrounded by a spherical shell of
viscosity ��2�, internal radius a1, and external radius a2, beyond which there is an
unbounded matrix fluid of viscosity ��3�. An arbitrary axisymmetric singularity acts in-
side or outside the viscous spherical shell. It is established that the Stokes’ stream func-
tion induced in this heterogeneous medium is explicitly expressible solely in terms of the
corresponding stream function for the unperturbed homogeneous unbounded medium. As
an application of the general solution, it is shown that there exists a homogeneous
spherical drop of viscosity � and radius a2, which is equivalent to the spherical drop of
viscosity ��1� and radius a1, surrounded by the spherical shell of viscosity ��2� and outer
radius a2. A new formula is also established for the effective viscosity of a multiphase
medium comprising an incompressible fluid of viscosity ��3� in which are embedded N
small identical spherical drops of viscosity ��1�, surrounded by spherical shells of vis-
cosity ��2�, assuming that the interference effects of these coated spherical drops are
negligible, and that their arrangement is axisymmetrical. The corresponding two-
dimensional results are also presented, by slightly modifying the three-dimensional
results. �DOI: 10.1115/1.3130450�

Keywords: spherical drops, spherical shells, incompressible fluids, heterogeneous
medium, Stokes’ stream function

1 Introduction
The hydrodynamic circle theorem of Milne-Thomson �1� con-

nects the complex potential due to the presence of an arbitrary
two-dimensional singularity in an infinite inviscid fluid in the
presence of a fixed rigid circular cylinder with the corresponding
complex potential in the absence of the rigid cylinder, thus paving
the way for a substantial reduction in effort in the calculation of
field quantities. The theorem is essentially a method of images,
which requires the specification of appropriate fictitious singulari-
ties at the images of an influencing point in a continuum with a
given boundary, and which are then superposed on the initial in-
fluencing singularity in order to satisfy the required boundary con-
ditions.

The three-dimensional counterpart of this circle theorem is the
sphere theorem of Weiss �2�, which expresses the velocity poten-
tial induced in an infinite inviscid fluid perturbed by a fixed rigid
sphere in terms of the corresponding velocity potential in the ab-
sence of the rigid sphere, again when the influencing three-
dimensional singularity is arbitrary. An axisymmetrical version of
Weiss’ sphere theorem has been furnished by Butler �3�, using
Stokes’ stream function.

The present paper is a generalization of a mathematically analo-
gous theorem of Collins �4�, which also explicitly expresses the
stream function of Stokes �5� due to the presence of an arbitrary
axisymmetric singularity in an incompressible infinite viscous
fluid disturbed by a fixed rigid sphere in terms of the correspond-
ing stream function in the absence of the fixed rigid sphere.

Specifically, we assume that a spherical drop of viscosity ��1� is
surrounded by a concentric spherical shell of viscosity ��2�, be-
yond which there is an infinite incompressible homogeneous fluid
of viscosity ��3�. An arbitrary axisymmetric singularity, such as a

source or an axial Stokeslet, acts inside or outside the viscous
spherical shell. It is desired to express the induced Stokes’ stream
function in this heterogeneous medium solely in terms of the cor-
responding stream function for the unperturbed homogeneous in-
finite medium. The determination of the precise form of this
unique dependence is facilitated by a complete theory of hydro-
dynamical images in the special case of two incompressible im-
miscible viscous fluids separated by a spherical surface, under the
influence of an arbitrary axisymmetric singularity located in the
interior of one of them. A systematic stepwise application of this
theory at the two concentric spherical interfaces in the original
three-phase fluid problem then yields the desired unique relation-
ship between the disturbed and undisturbed stream functions.

The origin of this repeated reflection method belongs to Max-
well ��6�, p. 443� in his elegant concise treatment of electrical
conduction through a thick dielectric plate separating two other
dissimilar semi-infinite dielectric media. Although his most im-
portant achievement appears to be his extension and mathematical
formulation of Michael Faraday’s theories of electricity and mag-
netic lines of force, he ��6�, p. 438� also considered the analogous
problem of electrical conduction through a thick dielectric spheri-
cal shell separating two other dissimilar dielectric media, but ex-
pressed the desired three electrostatic potentials in series of
spherical harmonics of positive and negative degrees. His series
expansion method of solution to this particular problem, instead of
his powerful method of images, must have been prompted, if we
are not missing something, by the fact that while his aforemen-
tioned case of three plane-layered dielectric materials requires
only the process of simple superposition of singularities of the
same type, involving no differentiation or integration, the gener-
alized case of a composite comprising any number of strata
bounded by concentric spherical interfaces, including even the
special case of two spherical-layered media, requires the two op-
erations of differentiation and integration, because unpredictable
singularities of different types now have to be superposed. How-
ever, as shown by Maxwell ��6�, p. 266�, the case of two uninsu-

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received November 19, 2007; final
manuscript received February 9, 2009; published online July 23, 2009. Review con-
ducted by Nesreen Ghaddar.

Journal of Applied Mechanics NOVEMBER 2009, Vol. 76 / 061007-1Copyright © 2009 by ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



lated concentric spherical surfaces, subject to the induction of an
electrified point placed between them, requires no differention or
integration in the application of the method of repeated reflection.
Therefore, the application of the method of repeated reflection
appears to be inextricably tied not only to the conditions that must
be fulfilled at the surface of separation between two media, but
also on the geometry of the interface.

Perhaps it may be mentioned that Aderogba �7,8� recently con-
sidered two elastostatic counterparts of the present problem when
the two concentric spherical interfaces are replaced with two par-
allel planes.

2 Formulation
Let x, y, and z be the three-dimensional rectangular Cartesian

coordinates, which are connected with the spherical polar coordi-
nates R, �, and � through the relations x=R sin � cos �, y
=R sin � sin �, and z=R cos �, as shown in Fig. 1.

We suppose that the three regions 0�R�a1, a1�R�a2, and
a2�R�� are occupied by incompressible immiscible fluids of
viscosities ��1�, ��2�, and ��3�, respectively, the interfaces R=a1
and R=a2 being assumed to be permanently spherical, due to the
action of surface tension.

In the usual indicial notation and summation convention, with
x=x1, y=x2, and z=x3, the equations governing the motion of
each fluid are

Ui,i = 0 �1�

�ij = − P�ij + ��Ui,j + Uj,i� �2�

��2Ui = P,i �3�

where Ui, �ij, and P are the velocity, stress, and pressure fields,
respectively, while �2 and �ij stand for the Laplacian operator and
Kronecker delta.

When the motion of the multiphase medium is axisymmetrical,
the foregoing equations are to be accompanied by the continuity
conditions

UR
�1� = 0, UR

�2� = 0
�4�

U�
�1� = U�

�2�, �R�
�1� = �R�

�2�

at R=a1, for all �, and the similar conditions

UR
�2� = 0, UR

�3� = 0
�5�

U�
�2� = U�

�3�, �R�
�2� = �R�

�3�

at R=a2, again for all �, the superscripts 1, 2, and 3 in round
brackets being used to distinguish between the fluids occupying
0�R�a1, a1�R�a2, and a2�R��, respectively. Generally,
for axisymmetrical motion,

UR =
1

R2

��

�q
, U� =

1

R�1 − q2�1/2
��

�R

�RR = 2�
�UR

�q
− P, ��� = 2��UR − �1 − q2�1/2�U�

�q
� 1

R
− P

�6�

��� = 2��UR + q�1 − q2�−1/2U��
1

R
− P

�R� = − ��1/R�1 − q2�1/2�UR

�q
−

�U�

�R
+

1

R
U��

where q=cos �=z /R, while Stokes’ stream function � satisfies
the equation

	4� = � �2

�R2 +
1

R2 �1 − q2�
�2

�q2�2

� = 0 �7�

Henceforth, in the interest of brevity and consistency, it is helpful
at the outset to introduce the contractions


�ij� = ��i�/���i� + ��j��, � = �a1/a2�2 �8�
as well as the differential operators

L�21��R� = �− 1 + 
�12�L1�R���R/a1�3, £�21��R� = 
�21�L1�R�

L�23��R� = �− 1 + 
�32�L2�R���R/a2�3, £�23��R� = 
�23�L2�R�
�9�

L�32��R� = 
�32�L2�R�, £�32��R� = �− 1 + 
�23�L2�R���R/a2�3

Li�R� = �1 −
R2

ai
2��3

2
− R

�

�R
−

1

4
�ai

2 − R2�	2�, i = 1,2

which facilitate the routine generation of additional stream func-
tions from a given stream function.

Specifically, if any function G�R ,�� satisfies the equation
	4G�R ,��=0, then the functions L�21��R�G�a1

2 /R ,��, £�21�

��R�G�R ,��, L�23��R�G�a2
2 /R ,��, L�32��R�G�R ,��, £�23�

��R�G�R ,��, and £�32��R�G�a2
2 /R ,�� also satisfy the same equa-

tion.
This new theorem is analogous to Kelvin’s transformation theo-

rem of generating additional harmonic functions from a given
harmonic function, and to the corresponding biharmonic analogy
that the biharmonicity of a three-dimensional function F�R ,� ,
�
implies the biharmonicity of the functions

RF�a2

R
,�,
�,�R2 − a2��1 − 2R

�

�R
+

1

2
�R2 − a2��2�F�R,�,
�

�R2 − a2��F�R,�,
� −
1

4
�R2 − a2�R−3/2	 R1/2�2F�R,�,
�dR�

The theorem leads directly to a fundamental theorem in axisym-
metric viscous flow, which will be repeatedly invoked in deriving
all subsequent formulas; it may be stated as follows.

If there is a general axisymmetrical flow of an incompressible
homogeneous viscous unbounded fluid, with no disturbing ob-
stacles, characterized by the stream function ��R ,��, all of whose
singularities are at a distance greater than a1 from the origin, then
on introducing a different immiscible incompressible viscous fluid
into the region R�a1, so that the continuity conditions �4� are

Fig. 1 Spherical polar coordinates
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satisfied at the interface R=a1; the new stream functions for the
two phases are

��1� = £�21��R���R,��
�10�

��2� = ��R,�� + L�21��R���a1
2

R
,��

where £�21��R� and L�21��R� are given by Eq. �9�, while it is as-
sumed that the fluid occupying the region 0�R�a1 is of viscos-
ity ��i�, whereas the fluid occupying the region a1�R�� is of
viscosity ��2�.

The hydrodynamical current at any point of the first medium is
thus the same as would have been produced by a combination of
appropriate singularities placed at the influencing point I if the
first medium had been infinite, while the current at any point of
the second medium is the same as would have been produced by
the influencing singularity at I, together with a combination of
another group of appropriate singularities placed at the image
point I1 of I in R=a1 if the second medium had been infinite.

If we suppose the first medium is a gas, then ��1�=0, and the
hydrodynamical action in the space occupied by the gas is less
than it would otherwise be, whatever be the nature of the influ-
encing singularity in the matrix medium, because we then simply
have ��1�=L1�R���R ,��.

If we suppose the first medium is rigid, then ��1�=�, and we
readily recover from Eq. �10� Collin’s �4� formula for an arbitrary
axisymmetrical viscous flow past a fixed rigid spherical solid.

In passing, we must emphasize again that, here and henceforth,
L�ij� and £�ij� are envisaged as differential operators in manipula-
tions, and not as functions.

3 Singularities in Outer Medium
We shall first consider the exterior problem in which an un-

bounded matrix fluid of viscosity ��3� is under the influence of an
arbitrary axisymmetric singularity, which in an unperturbed infi-
nite fluid is characterized by Stokes’ stream function ��R ,��. The
singularity is located at I, as shown in Fig. 2, with I1 standing for
its image in R=a1, while I2 designates its image in R=a2. I3 is the
image of I2 in R=a1, and vice-versa, and so on.

We wish to determine the induced stream functions ��1�, ��2�,
and ��3� in the three regions 0�R�a1, a1�R�a2, and a2�R
��, respectively, consistent with the continuity conditions �4�
and �5�. We shall accomplish this seemingly tedious task in a
systematic stepwise fashion, by disregarding each interface R
=a1 and R=a2 in turn.

First, we discountenance the interface R=a1 and invoke Eq.
�10� to confirm that the continuity conditions �5� are completely
satisfied when R=a2 if we select the construction

��2� = L�32��R���R,��
�11�

��3� = ��R,�� + £�32��R���a2
2

R
,��

where L�32� and £�32� are once again given by Eq. �9�.
Next, we disregard the interface R=a2, adopt Eq. �11� as the

inducing field, and again invoke Eq. �10� to confirm that the con-
tinuity conditions �4� at the interface R=a1 are completely satis-
fied by the second construction

��1� = £�21��R�L�32��R���R,��
�12�

��2� = L�32��R���R,�� + L�21��R�L�32��a1
2

R
���a1

2

R
,��

This second construction, in turn, upsets the continuity condi-
tions �5� at the second interface R=a2, and therefore demands a
modification of our construction, guided again by the fact that
Stokes’ stream function in the outer medium must vanish at an
infinite distance from the origin, leading to the third construction

��2� = L�32��R���R,�� + L�21��R�L�32��a1
2

R
���a1

2

R
,��

+ L�23��R�L�21��a2
2

R
�L�32���R����R,��

�13�

��3� = ��R,�� + £�32��R���a2
2

R
,�� + £�23��R�L�21��R�L�32�

��a1
2

R
���a1

2

R
,��

where � is once again given by Eq. �8�.
This straightforward stepwise process of satisfying the continu-

ity conditions at the concentric spherical interfaces can obviously
be continued indefinitely.

If we put

L�n��R� = L�21��R�L�23��a1
2

R
�L�21��R

�
�¯ L�23��a1

2�n−2

R
�L�21�

�� R

�n−1� �14�

so that L�1��R�=L�21��R�, L�2��R�=L�21��R�L�23��a1
2 /R�L�21��R /��,

and so on, then we find that the desired complete stream functions
in the three media admit the structured series representations

��1� = £�21��R��L�32��R���R,�� + L�23��R�

n=1

�

L�n��a2
2

R
�L�32�

���nR����nR,���

Fig. 2 Geometry of problem with singularity in third medium
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��2� = L�32��R���R,�� + 

n=1

�

L�n��R�L�32��a1
2�n−1

R
���a1

2�n−1

R
,��

+ L�23��R�

n=1

�

L�n��a2
2

R
�L�32���nR����nR,�� �15�

��3� = ��R,�� + £�32��R���a2
2

R
,�� + £�23��R�


n=1

�

L�n��R�L�32�

��a1
2�n−1

R
���a1

2�n−1

R
,��

Collin’s �4� case of a fixed rigid sphere disturbing an arbitrary
axisymmetric flow may be deduced from Eq. �15� by making a1
=0 and ��2�=�, and the stream functions then become

��1� = 0, ��2� = 0

��3� = ��R,�� − ��1 − �1 −
R2

a2
2��3

2
− R

�

�R
−

1

4
�a2

2 − R2�	2��
�� R

a2
�3

��a2
2

R
,���

which ensure the satisfaction of the no-slip condition at the spheri-
cal surface.

R=a2. Alternatively, we can simply say that if the spherical
shell is more viscous than the rest of the multiphase medium, then
it has the effect of annulling the stream function all round the
inner sphere.

The case when the space occupied by the concentric spherical
shell is filled with gas may also be deduced from Eq. �15� by
setting ��2�=0, yielding the results

��1� = 0

��2� = L2�R���R,�� + 

n=1

�

£�n��R�L2�a1
2�n−1

R
���a1

2�n−1

R
,��

+ �L2�R� − 1��R/a2�3

n=1

�

£�n��a2
2

R
�L2��nR����nR,� ,�

�16�

��3� = ��R,�� − �R/a2�3��a2
2

R
,��

where, for any positive integer n,

£�n��R� = £1�R�£2�a1
2

R
�£1�R

�
�¯ £2�a1

2�n−2

R
�£1�R�1−n�

�17�
£1�R� = �− 1 + L1�R���R/a1�3, £2�R� = �− 1 + L2�R���R/a2�3

It follows from an examination of Eq. �16�; therefore, that if the
space a1�R�a2 occupied by the spherical shell is filled with gas,
then it tends to prevent hydrodynamical currents from reaching
the inner spherical drop at all, and the hydrodynamical action in
the outer medium is less than it would otherwise be, whatever be
the physical nature of the influencing singularity.

4 Singularities in Inner Medium
Maxwell’s method of repeated reflection is also readily appli-

cable to the case when the arbitrary axisymmetric influencing sin-
gularity is operative inside the inner spherical drop of viscosity
��1�. Again, let this singularity be characterized in an unbounded
and undisturbed homogeneous fluid by ��R ,��, and let us put

L�12��R� = 
�12�L1�R�, £�12��R� = �− 1 + 
�21�L1�R���R/a1�3

�18�

��n��R� = L�23��R�L�21��a2
2

R
�L�23���R�…L�21��a2

2�2−n

R
�L�23�

���n−1R�
Then, it may be readily established by repeated imaging that the

stream functions induced in the three media by the arbitrary axi-
symmetric singularity located in the inner spherical medium are
given by

��1� = ��R,�� + £�12��R���a1
2

R
,�� + £�21��R�


n=1

�

��n��R�L�12�

��a2
2�1−n

R
���a2

2�1−n

R
,��

��2� = L�12��R���R,�� + 

n=1

�

��n��R�L�12��a2
2�1−n

R
���a2

2�1−n

R
,��

+ L�21��R�

n=1

�

��n��a1
2

R
�L�12�� R

�n��� R

�n ,�� �19�

��3� = £�23��R��L�12��R���R,�� + L�21��R�

n=1

�

��n��a1
2

R
�L�12�

�� R

�n��� R

�n ,���
where the differential operators L�ij� and £�ij� are as previously
defined.

The special case when the intervening space a1�R�a2 is oc-
cupied by gas ���2�=0� therefore reduces the stream functions
�19� to

��1� = ��R,�� − �R/a1�3��a1
2

R
,��

��2� = L1�R���R,�� + 

n=1

�

�o
�n��R�L1�a2

2�1−n

R
���a2

2�1−n

R
,��

+ £1�R�

n=1

�

�o
�n��a1

2

R
�L1� R

�n��� R

�n ,�� �20�

��3� = o

where L1�R� takes its value in Eq. �9�, while

�o
�n��R� = £2�R�£1�a2

2

R
�£2��R� ¯ £1�a2

2�2−n

R
�£2��n−1R�

�21�

Thus, we see again from Eqs. �19� and �20�, by virtue of the
definitions of L1�R�, £1�R�, L�12��R�, and L�21��R�, that whether the
spherical shell is less or more viscous than the rest of the multi-
phase medium, the hydrodynamical action in the space occupied
by the viscous concentric spherical shell is less than it would
otherwise be.

It also follows from Eq. �19� that the dominant distant effect in
the outer medium due to the presence of an arbitrary axisymmetric
singularity in the inner medium is

��
3 = 
�12�
�23�L2�R�L1�R���R,��

It, therefore, appears that if there are n+1 spherical layers, with
interfaces R=a1, R=a2 , . . . , R=an, the dominant distant effect in
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the outer medium of viscosity ��n+1� due to the specification of an
arbitrary axisymmetric singularity in the inner medium of viscos-
ity ��1� will be

��
�n+1� = 
�12�
�23�
�34�

¯ 
n�n+1�Ln�R�Ln−1�R� ¯ L1�R���R,��

5 Singularities in Interface Spherical Shell
We shall, finally, consider the case when an arbitrary axisym-

metric singularity acts inside the fluid occupying the interface
space a1�R�a2, subject again to the assumption that this singu-
larity in a homogeneous hydrodynamic medium of infinite extent
is given by ��R ,��. The singularity will form two infinite series
of images, lying on the same radius as the influencing point, none
of which lie within the spherical shell.

If we therefore proceed as in Sec. 2, then we will find that the
induced stream functions are

��1� = £�21��R����R,�� + 

n=1

�

��n��R����a2
2�1−n

R
,��

+ L�21��a2
2�1−n

R
����nR,����

��2� = ��R,�� + L�21��R���a1
2

R
,�� + 


n=1

�

��n��R����a2
2�1−n

R
,��

+ L�21��a2
2�1−n

R
����nR,��� + L�21��R�


n=1

�

��n��a1
2

R
�

���� R

�n ,�� + L�21�� R

�n���a1
2�n

R
,��� �22�

��3� = £23�R����R,�� + L�21��R���a1
2

R
,�� + L�21��R�


n=1

�

��n��a1
2

R
�

���� R

�n ,�� + L�21�� R

�n���a1
2�n

R
,����

The case of an arbitrary axisymmetric singularity acting in a
viscous fluid flowing between two no-slip concentric spherical
surfaces may be deduced from Eq. �22� by making ��1�=� and
��3�=�, yielding

��1� = 0, ��3� = 0
�23�

��2� = ��R,�� + £1�R���a1
2

R
,�� + 


n=1

�

�o
�n��R����a2

2�1−n

R
,��

+ £1�a2
2�1−n

R
����nR,��� + £1�R�


n=1

�

�o
�n��a1

2

R
���� R

�n ,��
+ £1� R

�n���a1
2�n

R
,���

where £1�R� and �o
�n��R� are given by Eqs. �17� and �21�, respec-

tively.

6 Applications
An important application of the analysis in this paper is to the

case of a spherical drop of viscosity ��1� and radius a1, sur-
rounded by a spherical shell of viscosity ��2�, internal radius a1,
and external radius a2 beyond which there is a matrix fluid of
viscosity ��3� flowing uniformly at infinity with velocity �0,0 ,
−W�. In this case, the stream function for the undisturbed uniform
flow is

� = 1
2WR2 sin2 � �24�

If we now put

A =
��1��1 − �1/2��1 + 2�1/2 + 8� + 4�3/2� + 2��2��1 + �1/2 + � + �3/2 + �2�

���1��1 − �1/2��1 + 3�1/2 + ��
1 − 2�1/2 − 
�32��1/2�1 − 2���

+ ��1��1 − �1/2��1 + 2�1/2 + 8� + 4�3/2�
1 − 1
2
�32��1/2�1 + �1/2��

+ ��2�
2�1 + �2 + � + �3/2 + �2��1 − 1
2
�32��1/2�1 + �1/2��

− 
�32��3/2�1 − �1/2��1 + 3�1/2 + ��� �25a�

then the substitution of Eq. �24� into Eq. �14� shows that the
stream function induced in the matrix medium of viscosity ��3�

assumes the form

��3� = 1
4W�2R2 − a2R�2 + A
�23�� + Aa2

3
�23�R−1�sin2 �

�25b�

which physically represents a combination of the direct effect of
the applied uniform field with the effects of a Stokeslet in the
z-direction and a point source, both singularities being located at
the origin, outside the outer medium.

On the other hand, if a single spherical drop of viscosity �0 and
radius a2 is embedded in a matrix fluid of viscosity ��3� flowing
uniformly at infinity with velocity �0,0 ,−W�, then the stream
function induced in the matrix fluid is

��3� = 1
2W�R2 − a2R�1 + 1

2
�03�� + 1
2
�03��a2

3/R��sin2 � �26�

It is therefore easy to show from Eqs. �25a�, �25b�, and �26� that
the case of an embedded spherical drop of viscosity ��1�, sur-
rounded by a spherical shell of viscosity ��2�, is the same as that
of a homogeneous single spherical drop of the radius a2 of the
outer surface of the spherical shell, and of viscosity �0, provided
that

�0 =
A��2���3�

�1 − A���2� + ��3� �27�

By making a1=��1�=0 in Eq. �25a�, we deduce the expected re-
sult

�0 = ��2� �28�

for the case of an embedded uncoated spherical drop of radius a2.
Next, we suppose that there are N identical spherical drops of

radius a1 and viscosity ��1�, each surrounded by a spherical shell
of internal radius a1 and external radius a2 and viscosity ��2�,
placed in an incompressible medium of viscosity ��3�, at such
distances from each other that their interaction effects in disturb-
ing the applied uniform flow �0,0 ,−W� may be taken as indepen-
dent of one another. Let all these surrounded spherical drops be
enclosed within a sphere of radius a3. Then, from Eq. �25b�, the
stream function induced in the matrix fluid of ��3� will be of the
form

��3� = 1
4W�2R2 − N
a2R�2 + A
�23�� − Aa2

2
�23�R−1��sin2 �

�29�

If we put the ratio of the volume of the N small surrounded spheri-
cal drops to that of the sphere of radius a3, which encloses them as

K = N�a2/a3�3 �30�

then the stream function �29� may be rewritten in the form

��3� = 1
4W�2R2 − Ka3

3
�R/a2
2��2 + A
�23�� − A
�23�R−1��sin2 �

�31�

Now, if the enveloping sphere of radius a3 had been composed of
an incompressible fluid of viscosity ��4�, then we should have had
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��3� = 1
4W�2R2 − a3R�2 + 
�43�� + 
�43��a3

3/R��sin2 � �32�

Expression �31� may therefore be taken as equivalent to Eq. �32�
if

��4� =
AK��2���3�

�1 − AK���2� + ��3� �33�

This ��4�, therefore, is the effective viscosity of a multiphase
medium comprising a fluid of viscosity ��3� in which are embed-
ded, axisymmetrically, N small spherical drops of viscosity ��1�

and radius a1, surrounded by identical spherical shells of viscosity
��2�, internal radius a1, and external radius a2, the ratio of the
volume of the coated spherical drops to that of the whole being K.

The special case of a multiphase medium in which the matrix
contains uncoated spherical drops, arranged axisymmetrically,
may be obtained from Eq. �34� by making a1=0, thereby obtain-
ing

��4� =
K��2���3�

�1 − K���2� + ��3� �34�

while the further special case in which the dispersed spherical
drops are rigid may also be deduced by making ��2�=�, thereby
obtaining

��4� =
K

1 − K
��3� �35�

7 Two-Dimensional Analogy
It is a straightforward exercise to pass from the solution of the

foregoing three-dimensional problem to the solution of the corre-
sponding two-dimensional problem.

Thus, let r and � be the plane polar coordinates, which are
connected with the rectangular Cartesian coordinates x and y
through the relations x=r cos � and y=r sin �. We suppose that
the three regions 0�R�a1, a1�R�a2, and a2�r�� are occu-
pied by immiscible incompressible fluids of viscosities ��1�, ��2�,
and ��3�, respectively, the interfaces r=a1 and r=a2 being as-
sumed to be permanently circularly cylindrical, so that, at r=a1,
and for all �,

Ur
�1� = 0, Ur

�2� = 0
�36�

U�
�1� = U�

�2�, �r�
�1� = �r�

�2�

and at r=a2, and again for all �,

Ur
�2� = 0, Ur

�3� = 0
�37�

U�
�2� = U�

�3�, �r�
�2� = �r�

�3�

It is well known that, in this two-dimensional case, a general
solution of Eqs. �1� and �3� admits the representation

�u1,u2� = �−
��

�y
,
��

�x
�

�38�

P = �	 �2��

�x
dy

provided that

�4� = 0, �2 =
�2

�x2 +
�2

�y2 �39�

� being known now as Lagrange’s stream function.
Also, apart from multiplicative constants, the functions

� f1
�

�y
− f2

�

�x
�r2 log r, tan−1�y/x�, log r

represent, respectively, in a viscous fluid of infinite extent, the
fundamental singularities, through the origin, corresponding to a
line force �f1 , f2�, a line source, and a semi-infinite plane of source
doublets.

Henceforth, the differential operators L�n��r�, ��n��r�, £�ij��r�,
Li�r�, and L�ij��r� are redefined as follows:

£�12��r� = �− 1 + 
�21�L1�r���r/a1�2, L�12��r� = 
�12�L1�r�

£�21��r� = 
�21�L1�r�, L�21��r� = �− 1 + 
�12�L1�r���r/a1�2

£�23��r� = 
�23�L2�r�, L�23��r� = �− 1 + 
�32�L2�r���r/a2�2

£�32��r� = �− 1 + 
�23�L2�r���r/a2�2, L�32��r� = 
�32�L2�r�
�40�

Li�r� = �1 −
r2

ai
2��1 − r

�

�r
−

1

4
�ai

2 − r2��2�, i = 1,2

L�n��r� = L�21��r�L�23��a1
2

r
�L�21�� r

�
�¯ L�23��a1

2�n−2

r
�L�21��r�1−n�

��n��r� = L�23��r�L�21��a2
2

r
�L�23���r� ¯ L�21��a2

2�2−n

r
�L�23��r�n−1�

Then, as in the case of three-dimensional axisymmetrical flow, we
can state a basic theorem whose function is to split into two parts
in an invariant manner Lagrange’s stream function induced by an
arbitrary two-dimensional singularity operative in the interior of
one of two incompressible immiscible viscous fluids separated by
a permanently circular cylindrical surface. The statement of the
theorem is as follows.

If there is a general two-dimensional flow of an incompressible
homogeneous viscous infinite fluid, with no disturbing obstacles,
characterized by Lagrange’s stream function ��r ,�� all of whose
singularities are at a distance greater than a1 from the origin, then
on introducing a different incompressible immiscible viscous fluid
into the region r�a1, so that the conditions �36� are satisfied at
the interface r=a1, the new stream functions for the two phases
are given by

��1��r,�� = £�21��r���r,��
�41�

��2��r,�� = ��r,�� + L�21��r���a1
2

r
,��

where £�21��r� and L�21��r� assume their values in Eq. �40�. This
theorem is mathematically analogous to the circle theorem of Ad-
erogba �9� in extensional elasticity.

The circulation produced in the circular cylindrical drop by a
line Stokeslet �f1 ,o� applied at the point �o ,h� in the matrix me-
dium is therefore given by

��1� = K1
�21��1 −
r2

ai
2��y − h + 2h log r1 + �a1

2 − h2�
�

�y
log r1�

where K1 is a constant and r1
2=x2+ �y−h�2, while the circulation

produced in the circular cylindrical drop by a line Stokeslet �o , f2�
applied at the same point �o ,h� in the matrix medium is given by

��1� = K2
�21��1 −
r2

ai
2��x + �a1

2 − h2�
�

�y
log r1�

where K2 is another constant. Thus, there is a fundamental differ-
ence in the stream function and associated velocity field due to a
line force acting tangentially to the circular cylindrical interface
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than those due to a line force acting normally to the circular cy-
lindrical interface.

As before, it may now be readily established by repeated imag-
ing that the following representation law holds.

If Lagrange’s stream function ��r ,�� due to the specification
of an arbitrary two-dimensional singularity in an incompressible
viscous fluid of infinite extent is known, then the stream functions
��1�, ��2�, and ��3� induced in the three regions 0�r�a1, a1
�r�a2, and a2�r��, respectively, occupied by incompressible
immiscible fluids due to the specification of the same arbitrary
singularity in the inner medium 0�r�a1 are explicitly determin-
able in terms of ��r ,�� in accordance with the relations

��1� = ��r,�� + £�12��r���a1
2

r
,�� + £�21��r�


n=1

�

��n��r�L�12�

��a2
2�1−n

r
���a2

2�1−n

r
,��

��2� = L�12��r���r,�� + 

n=1

�

��n��r�L�12��a2
2�1−n

r
���a2

2�1−n

r
�

+ L�21��r�

n=1

�

��n��a1
2

r
�L�12�� r

�n��� r

�n ,�� �42�

��3� = £�23��r��L�12��r���r,�� + L�21��r�

n=1

�

��n��a1
2

r
�L�12�

�� r

�n��� r

�n ,���
which may be deduced from Eq. �19�, by replacing R with r, �
with �, and remembering the new definitions in Eq. �40�.

In a similar manner, it may be deduced that if the outer fluid of
viscosity ��3� is under the influence of an arbitrary singularity,
which in a fluid of infinite extent is characterized by ��r ,��, then
the induced stream functions in the three phases are given by

��1� = £�21��r��L�32��r���r,�� + L�23��r�

n=1

�

L�n��a2
2

r
�L�32�

���nr����nr,��� ,

��2� = L�32��r���r,�� + 

n=1

�

L�n��r�L�32��a1
2�n−1

r
���a1

2�n−1

r
,��

+ L�32��r�

n=1

�

L�n��a2
2

r
�L�32���nr����nr,�� �43�

��3� = ��r,�� + £�32��r���a2
2

r
,�� + £�23��r�


n=1

�

L�n��r�L�32�

��a1
2�n−1

r
���a1

2�n−1

r
,��

where L�21��r�, L�23��r�, £�21��r�, £�23��r�, and Li�r� assume their
values in Eq. �40�.

It therefore follows from Eq. �43� that if the interface circular
cylindrical tube a1�r�a2 is occupied by gas, then it tends to

prevent hydrodynamical currents from reaching the inner circular
cylindrical drop 0�r�a1 at all, and the hydrodynamical action in
the outer medium a2�r�� is less than it would otherwise be,
whatever be the nature of the influencing singularity in this outer
medium. Indeed, whether the viscous cylindrical tube transmits
singularities better or worse than the rest of the multiphase me-
dium, the hydrodynamical action in the space occupied by the
tube is less than it would otherwise be.

In a similar manner, it may be established that if Lagrange’s
stream function ��r ,�� due to the specification of an arbitrary
two-dimensional singularity in an incompressible infinite viscous
fluid is known, then the stream functions ��1�, ��2�, and ��3�

induced in the three domains 0�r�a1, a1�r�a2, and a2�r
��, respectively, due to the specification of the same singularity
in the interface medium a1�r�a2 are explicitly determinable in
terms of ��r ,�� in accordance with the relations

��1� = £�21��r����r,�� + 

n=1

�

��n��r����a2
2�1−n

r
,�� + L�21�

��a2
2�1−n

r
����nr,���� ,

��2� = ��r,�� + L�21��r���a1
2

r
,�� + 


n=1

�

��n��r����a2
2�1−n

r
,��

+ L�21��a2
2�1−n

r
����nr,��� + L�21��r�


n=1

�

��n��a1
2

r
�

���� r

�n ,�� + L�21�� r

�n���a1
2�n

r
,��� �44�

��3� = £�23��r����r,�� + L�21��r���a1
2

r
,�� + L�21��r�


n=1

�

��n�

��a1
2

r
���� r

�n ,�� + L�21�� r

�n���a1
2�n

r
,����

where the differential operators assume their values in Eq. �40�.
A simple application of the foregoing two-dimensional results

is afforded by the case of a circular cylindrical drop of viscosity
��1� and radius a1, surrounded by a circular cylindrical tube of
viscosity ��2�, internal radius a1, and external radius a2, beyond
which there is an infinite immiscible fluid of viscosity ��3�, which
flows at infinity with the shear velocity V�−x ,y�, where V is a
constant. In this case, the undisturbed Lagrange’s stream function
is

��r,�� = 1
2vr2 sin 2� �45�

The substitution of this into formula �44� shows that the stream
function induced in the incompressible matrix fluid of viscosity
��3� is

��3� =
1

2
v�r2 − a2

2�1 + �1 −
a2

2

r2 �B
�23���sin 2� �46�

where
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B =
�1 − ���
�21� − �
�12�
�32��

�
�21��1 − � − �
�32�� − �
�12�
�1 + ���1 − 2�� + 
�32��1 − 2� + �2 + 2�3���
�47�

Equation �46� represents the combination of the effect of the
influencing stream function �1 /2�vr2 sin 2� with the effects of a
force doublet whose axis is parallel to the y-axis and a source
multiplet whose axis is also parallel to the y-axis, with both line
singularities passing through the origin.

If there are N such similarity coated noninteracting circular cy-
lindrical drops placed in a matrix medium of viscosity ��3�, then if
these coated cylindrical drops are all contained within a circular
cylinder of radius a3, the stream function induced in the matrix
medium may be taken as

��3� =
1

2
v�r2 − ka3

2�1 + �1 −
a2

2

r2 �B
�23���sin 2� �48�

where

k = N�a2/a3�2 �49�

and represents the ratio of the cross-sectional area of the N small
coated cylinders to that of the cylinder, which encloses them.

Now, if the whole enclosing circular cylinder of radius a3 had
been occupied by a fluid of viscosity �0, then we should have had

��3� =
1

2
v�r2 − a3

2�1 + �1 −
a3

2

r2 �
�03���sin 2� �50�

Therefore, far away, Eq. �48� will be equivalent to Eq. �50�
provided that

�0 =
k
�1 + B���2� + ��3�� − ��2� − ��3�

2���2� + ��3�� − k
�1 + B���2� + ��3��
��3� �51�

With B given by Eq. �47�, this �0 is the effective viscosity of a
multiphase medium comprising an incompressible viscous me-
dium of viscosity ��3� in which are embedded N small noninter-
acting incompressible circular cylindrical drops of viscosity ��1�

and radius a1, surrounded by incompressible circular cylindrical
tubes of viscosity ��2�, internal radius a1, and external radius a2.

The case of a multiphase medium comprising a medium con-
taining uncoated circular cylindrical drops may be obtained from
Eq. �51� by making a1=0, which reduces Eq. �47� to B=1, thus
finally obtaining, in this case,

�0 =
k�2��2� + ��3�� − ��2� − ��3�

2���2� + ��3�� − k�2��2� + ��3��
��3� �52�

In the interest of completeness, if we suppose that the radii of the
circular cylindrical interfaces in this section become infinite, then
the case becomes that of three incompressible immiscible fluids of
viscosities ��1�, ��2�, and ��3� occupying the three regions ��x�
�� ,−��y�0�, ��x��� ,0�y�H�, and ��x��� ,H�y���, re-
spectively, the fluids being infinite in the z-direction, while the
interfaces ��x��� , y=0� and ��x��� , y=H� are assumed to be
permanently flat.

In this case, it may again be readily established by repeated
reflection that the following representation law holds.

If Lagrange’s stream function ��x ,y� due to the specification of
an arbitrary two-dimensional singularity in an incompressible in-
finite viscous fluid is known, then the stream functions ��1�, ��2�,
and ��3� induced in the three regions −��y�0, 0�y�H, and
H�y��, respectively, occupied by incompressible immiscible
viscous fluids due to the specification of the same singularity in
the first medium −��y�0 are explicitly determinable solely in
terms ��x ,y� in accordance with the relations

��1� = ��x,y� + £�12��y���x,− y� + £�21��y�

n=1

�

L�n��y�L�12��2nH

− y���x,2nH − y�

��2� = L�12���x,y� + 

n=1

�

L�n��y�L�12��2nH − y���x,2nH − y� + L�21�

��y�

n=1

�

L�n��− y�L�12��2nH + y���x,2nH + y� �53�

��3� = £�23��H − y��L�12��y���x,y� + L�21��y�

n=1

�

L�n��− y�L�12�

��2nH + y���x,2nH + y��
where

L�12��y� = 
�12� £ �y�, £�12��y� = �− 1 + 
�21� £ �y��, £ �y�

= y�2
�

�y
− y�2�

L�21��y� = �− 1 + 
�12� £ �y��, £�21��y� = 
�21� £ �y�
�54�

L�23��y� = �− 1 + 
�32� £ �y��, £�23��y� = 
�23� £ �y�

Ln�y� = L�23��H − y�L�21��2H − y�L�23��3H − y� ¯ L�21��2�n − 1�H

− y�L�23���2n − 1�H − y�

Let us now suppose that the first fluid is the same as the third
���3�=��1��, so that the case is that of a viscous thick layer of
viscosity ��2� separating a semi-infinite upper fluid of viscosity
��1� from a semi-infinite lower fluid of the same viscosity ��1�.
Then,

��2� = 
�12��£�y���x,y� + 

n=1

�

£�n��y� £ �2nH − y���x,2nH − y�

+ 
− 1 + 
�12� £ �y��

n=1

�

£�n��− y� £ �2nH + y���x,2nH + y��
�55�

where

£�n��y� = L�21��H − y�L�21��2H − y�L�21��3H − y�

¯ L�21���2n − 1�H − y� �56�

Since the operator £�y� must first be applied in each term of
expression �55�, It follows that whether the embedded thick layer
is less or more viscous than the matrix medium, the hydrodynami-
cal action in the embedded layer is physically different from what
it would otherwise be, whatever be the nature of the inducing
singularity in the matrix.

Finally, as in the cases of spherical-layered and circularly
cylindrical-layered fluids, it may be established that the effective
viscosity �0 of a multiphase medium comprising a medium of
viscosity ��1� and thickness H1 in which are embedded N small
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plane layers, each viscosity ��2� and thickness H2, the ratio of the
thickness of all the small plane layers to that of the whole being
K, is given by

�0 + ��1�

���2� + ��1��2 =
1 � �1 − 4K��1���2�/���1� + ��2��2�1/2

2K��2� �57�

In order that the action of these plane layers may not produce
effects depending on their interference, their thickness must be
small compared with their distances from one another, and there-
fore K, which is equal to NH2 /H1, must be a small fraction.

8 Closure
It has been established with the help of Maxwell’s method of

repeated reflection that if we know the stream function due to the
presence of an arbitrary singularity in an unbounded incompress-
ible viscous fluid, with no disturbing obstacles, then the corre-
sponding stream functions for three immiscible incompressible
viscous fluids occupying the entire space and separated by either
two concentric spherical or circular cylindrical surfaces are deter-
mined solely and compactly by the known stream function for the
unbounded and unperturbed homogeneous fluids. The precise
form of the unique dependence is facilitated by the known theory
for the special case of two media separated by either a spherical or
a circular cylindrical surface.

It is clear that we can apply the analysis presented to the case of
three plane-layered fluids in three-dimensional axisymmetrical
flow, because we know the corresponding fundamental theory of
images in the case of two incompressible immiscible viscous flu-
ids separated by a flat surface. Specifically, if there is a general
axisymmetrical motion of an incompressible viscous fluid of infi-
nite extent, with no disturbing obstacles, characterized by the
stream function ��r ,z�, all of whose singularities are in the upper
half-space z�o of viscosity ��2�, then on introducing a different
immiscible fluid into the lower half-space z�0, of viscosity ��1�,
so that the flat surface conditions hold at the interface z=0, the
new stream functions are given by

��1� = z
�21��2
�

�z
− z�2���r,z� ,

�58�

��2� = ��r,z� − �1 − z
�12��2
�

�z
− z�2����r,− z�

The proof of this theorem is analogous to that leading to Eq.
�10�. The theorem shows that an axial Stokeslet �0,0 , f3� applied
at the point �0,0 ,h� in the half-space fluid of viscosity ��2� in-
duces in the half-space fluid of viscosity ��1� the stream function

��1� = K3
�21��hr2

R1
3 −

�

�z
� r2

R1
�� �59�

where K3 is a constant, while R1
2=r2+ �z−h�2. Physically, Eq.

�59� represents a combination, at the influencing point �0,0 ,h�, of
a source and a Stokeslet doublet whose axis is parallel to the
z-axis. The repeated application of the theorem to the general case
of three plane-layered fluids is now a routine exercise.

Perhaps it will prove possible to extend the present paper to the
more versatile case of three incompressible immiscible fluids
separated by two confocal triaxial ellipsoidal surfaces, guided by
the creative and original pioneering papers of Eshelby �10,11� on
ellipsoidal inhomogeneities.

In this connection, it may be noted that a complete general
solution of the governing equations �1� and �3� is

2�ui = �2Gi −
�2Gj

�Xj � Xj
, P = −

1

2
�2Gi,i �60�

provided that �4Gi=0.
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Antiplane Harmonic
Elastodynamic Stress Analysis of
an Infinite Wedge With a Circular
Cavity
In this paper, the antiplane harmonic dynamics stress of an infinite isotropic wedge with
a circular cavity is analyzed for the first time by using a novel method with Green’s
function, complex functions, and multipolar coordinates. A basic solution for the dis-
placement field of an elastic half-space containing a circular cavity subjected to anti-
plane harmonic point force is employed as the Green’s function. Based on the Green’s
function, the infinite wedge problem is equivalently transformed into the problem of a
half-space divided by a semi-infinite traction free line. The equivalent problem is solved
numerically to determine the dynamic stress field in the wedge at different apex angles
and cavity locations. We show that the wedge angle, cavity location, and incident angle
and frequency of the external load have significant effect on the dynamic stress of the
cavity surface. The dynamic stress concentration factor on the cavity surface becomes
singular when the cavity is close to the boundary of the wedge.
�DOI: 10.1115/1.3130451�

Keywords: infinite wedge, circular cavity, Green’s function, complex functions, multipo-
lar coordinates, dynamic stress concentration

1 Introduction
Stress analysis in a wedge is of practical importance in engi-

neering design. Engineering materials and structures often have
wedgelike parts of which the geometry or materials are discon-
tinuous. Shahani �1,2� studied the antiplane deformation of an
anisotropic wedge of finite radius with different boundary condi-
tions and studied the model III stress intensity factor �SIF� of
edge-cracked circular shafts, bonded half planes, bonded wedges,
and double cantilever beams of isotropic and anisotropic materi-
als. Later on, Shahani �3,4� studied the antiplane shear deforma-
tion of two edge-bonded dissimilar isotropic wedges of both finite
and infinite radii, and obtained the explicit expression for the
stress intensity factor. The problem of wedgelike structure con-
taining cavities, especially close to its vertex, is of particularly
interest to the practical engineering �e.g., a dam with tunnel�. In
fact, the seismic wave scattering in the dam has been an important
subject in the field of seismology for a long time, especially in the
field of earthquake engineering and strong motion seismology.
This provides a strong impetus to the understanding of the re-
sponse of the wedge with interior cavity under external dynamic
load. However, how to solve the dynamic problem of an infinite
wedge with interior cavity is a big challenge.

The static analysis of a wedge with infinite or finite radius has
been considered by various studies. Tranter �5� solved the plane
elasticity problem of an isotropic wedge with Airy stress function
and Mellin transform. Williams �6� studied the stress singularities
at the wedge apex by using eigenfunction expansion method.
Later on, Dempsey and Sinclair �7� examined the stress singular-
ity at the wedge apex under different loading conditions. Dempsey

�8� solved the paradox �the stress in the wedge becomes infinite
when the wedge angle satisfies tan 2�=2�� in a classical two-
dimensional solution given by Lévy �9� with an Airy stress func-
tion. Ting �10,11� further discussed the paradox existed in the
elementary solution of Lévy by using an expansion form of the
harmonic eigenfunctions. Kargmovin and Shahani �12� used finite
Mellin transforms to obtain the displacement and stress compo-
nents in an isotropic wedge with finite radius under antiplane de-
formation. 10 years later, Shahani �13� expanded his previous
work �12� by giving a closed form solution for the stress distribu-
tion in the wedge and applied it to calculate the stress intensity
factors of a circular shaft containing an edge crack. Faal et al. �14�
obtained an analytical solutions for the antiplane static stress field
of an infinite isotropic wedge with multiple cracks and later gave
an analytical solutions for a finite wedge weakened by cavities
�15�.

Compared with the full space or half-space problems, the infi-
nite wedge problems are much more difficult. In addition, most
works in this direction are focused on antiplane static analysis, but
few works are dedicated to antiplane dynamics stress. Achenbach
�16,17� studied the shear horizontal �SH�-wave propagation in an
elastic wedge as one of the earliest works on the elastic dynamics
analysis of wedges. Demendjian �18� studied the behavior of wave
propagation in an elastic wedge-shaped medium with an arbitrary
shaped canyon at its vertex with Hankel function by adjusting the
rank of Hankel function to satisfy the governing equation and
boundary conditions. Liu and Liu �19� used the same idea of the
“fractional Hankel function” in studying the ground motion of a
half-space with an isosceles triangular hill and a subsurface cavity
under incident SH waves, and they gave an analytical solution for
the displacement field in the half-space.

This paper aims to study the problem of a plane SH-waves
propagating through an infinite wedge with a cavity under anti-
plane shear loading by using the Green’s function method to cal-
culate the antiplane dynamic displacement and stresses field, as
well as the dynamic stress concentration factors �DSCFs� on the
cavity. The Green’s function is obtained by solving the displace-
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ment field of an elastic half-space containing a circular cavity
subjected to an antiplane harmonic point force. Base on the
Green’s function method, the wedge problem can be equivalently
transformed into a problem of a half-space divided by a semi-
infinite traction free line. Combined with the method of complex
functions and multipolar coordinate method proposed by Liu et al.
�20,21�, the infinite wedge problem are solved numerically to de-
termine the dynamic displacement and stress field in the wedge.

2 The Model
The infinite wedge with a circular cavity is shown in Fig. 1. We

denote the vertex of the wedge as O�, the center of the cavity as
O, the surface of the cavity as T, the horizontal surface of the
wedge as S, and the oblique surface as B. a is the radius of the
cavity, and the distance between O� and O and that between O
and the horizontal surfaces are L and h, respectively. d is the
projection of the distance OO� on x� axis. The position of any
point on the surface of the cavity is defined by angle � clockwise
with respect to point p on x� axis. � is the incident angle, and � is
the angle between the oblique surface B and y� axis �0��
�90 deg�. In this work, we will transform this infinite wedge
problem equivalently into the problem of a half-space divided by
a semi-infinite traction free line using the Green’s function
method.

3 Governing Equation
Supposing harmonic response and neglecting body force, the

governing equation for the antiplane shear problem is the elasto-
dynamic equation of motion as

�2W

�x2 +
�2W

�y2 + k2W = 0 �1�

where k=� /cs, cs=�� /�, � is the circular frequency of the dis-
placement W�x ,y , t�, cs is the shear wave velocity, and � and � are
the mass density and the shear modulus of the medium in the
wedge, respectively.

Equation �1� written in the polar coordinate system �r ,�� is

�2W

�r2 +
1

r

�W

�r
+

1

r2

�2W

��2 + k2W = 0 �2�

and the corresponding stresses are given by

	xz = �
�W

�x
, 	yz = �

�W

�y
�3�

	rz = �
�W

�r
, 	�z =

�

r

�W

��
�4�

In complex-plane �z , z̄�, where z=x+yi=r ·ei� and z̄=x−yi
=r ·e−i�, the stress functions are changed into

	xz = �� �W

�z
+

�W

� z̄
�, 	yz = i�� �W

�z
−

�W

� z̄
� �5�

	rz = �� �W

�z
ei� +

�W

� z̄
e−i��, 	�z = i�� �W

�z
ei� −

�W

� z̄
e−i�� �6�

4 Green’s Function

4.1 Governing Equation and Boundary Condition. The
Green’s function used in this paper is defined as the displacement
response of the elastic half-space containing a cylindrical cavity to
an antiplane harmonic point force at any point of the elastic plane,
as shown in Fig. 2�a�. In the polar coordinate system, the govern-
ing equation of displacement function G is written as follows:

�2G

�r2 +
1

r

�G

�r
+

1

r2

�2G

��2 + k2G = 
�r − r0� �7�

where r0 stands for the position of the point force, r0=r0 ·ei�0, and
r stands for the position of the arbitrary point r=r ·ei�, in polar
coordinates.

In complex plane �z , z̄�, Eq. �7� is transformed into

�2G

�z � z̄
+

1

4
k2G = 
�z − z0� �8�

where z0 stands for the position of the point force, z0=r0 ·ei�0, and
z stands for the position of an arbitrary point, z=r ·ei�, in the
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Fig. 1 The scattering model of the infinite wedge with a circu-
lar cavity

(a)

S

• ( )0z zδ −

O’’
x’’

y’’

x’

y’y

x

O

α

SH-wave

SO’’
x’’

y’’

x’

y’
y

x

O

(b)

Fig. 2 „a… A half-space with a circular cavity loaded by a point
force �„z−z0…. „b… A half-space with a cavity loaded by an exter-
nal force with an incident angle �.
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complex plane. The boundary conditions can be expressed as

	��z = 0, at �� = 0 and �� = �/2 + � �9�

	rz = 0 at �z� = a �10�

4.2 Derivation of the Green’s Function. The basic solution
that satisfies the governing equation �8� and the boundary condi-
tions �9� and �10� should include the disturbance of the antiplane
point force and the scattering wave incited by the cavity. The
wave displacement of the full space due to the point force 
�z
−z0� loaded on an arbitrary position of the plane �as shown in Fig.
2�a�� is derived as follows. The solution of Eq. �7� is �22�

G�i� =
i

4�
H0

�1��k�r − r0�� �11�

If we rewrite Eq. �11� in the complex plane �z� ,z��, we can obtain
the wave displacement due to the point force in the complex plane
�z� ,z��,

G�i� =
i

4�
H0

�1��k�z� − z0��� �12�

where �z�−z0��=r−r0, H0
�1��� � is the first kind of Hankel function

of zero order �23�.
According to the “symmetry theory,” which was developed by

Lee et al. �24�, the reflected wave G�r� can be written as

G�r� =
i

4�
H0

�1��k�z� − z0��� �13�

The stress induced by the summation of incident wave and reflect
wave G�i+r�=G�i�=G�r� �the disturbance of the antiplane linear
source force� satisfies the stress free condition on the horizontal
surface of the wedge, i.e.,

G��z
�i+r� = 0 at �� = 0 and �� = � �14�

Then, we need to construct a wave function G�s� scattered by
cavity to satisfy the stress free condition on the horizontal surface,
as shown in Fig. 2�a�.

The scattering wave of the cavity in an infinite full space is

G1
�s� = 	

m=−�

�

AmHm
�1��k�z� − 
�� · � z� − 


�z� − 
��
m

�15�

However, this wave function does not satisfy the traction free
boundary condition at the surface of the half-space. We then con-
struct an equivalent problem with the mirror image method �24� as
follows: consider an unbound medium �a full space� and suppose
there is another identical cylindrical cavity of the same radius with

origin at 
̄=d−hi, which is the conjugate of the real cavity 
=d
+hi. The scattering wave of the imaginary cavity is

G2
�s� = 	

m=−�

�

AmHm
�1��k�z� − 
̄�� · � z� − 
̄

�z� − 
̄�
�−m

�16�

The additional wave G2
�s� is a “mirror image” of the scattered wave

G1
�s� with the line of symmetry being the surface of the half-space.

This symmetry resulted in the sum of the functions G1
�s�+G2

�s�

having zero slope at the line of symmetry. In other words, the total
displacement field of scattering wave G�s�=G1

�s�+G2
�s� satisfies the

traction free condition on the horizontal surface,

G�s� = 	
m=−�

�

Am
Hm
�1��k�z� − 
�� · � z� − 


�z� − 
��
m

+ Hm
�1��k�z� − 
̄�� · � z� − 
̄

�z� − 
̄�
�−m� �17�

where 
 is the complex coordinate of point O with origin at O�,

and 
=d+hi. 
̄ is the conjugate of 
, and Am is the unknown
coefficient.

The total displacement field G of this problem can be obtained
by combining Eq. �12�, �13�, and �17�,

G = G�i� + G�r� + G�s� =
i

4�
�H0

�1��k�z� − z0��� + H0
�1��k�z� − z0�̄���

+ 	
m=−�

�

Am
Hm
�1��k�z� − 
�� · � z� − 


�z� − 
��
m

+ Hm
�1��k�z� − 
̄�� · � z� − 
̄

�z� − 
̄�
�−m� �18�

It is obvious that Eq. �18� satisfies the traction free condition on
the horizontal surface, and the unknown coefficient Am can be
determined by the stress free condition on the cavity.

5 Displacement Field of the Half-Space With Cavity

First, we consider the incidence of a SH-wave W�i� in the infi-
nite half-space containing a cavity, as shown in Fig. 2�b�. There
will be a reflect wave W�r�, which is induced by the surface of the
half-space. In the complex plane �z� ,z��, the wave functions are

W�i� = W0 · eik/2�z�ei�+z�e−i�� �19�

W�r� = W0 · eik/2�z�e−i�+z�ei�� �20�

where W0 is the amplitude of the wave, and always taken as unit
1 in the paper. Similarly, the stress induced by the summation of
incident wave and reflect wave, W�i+r�=W�i�+W�r�, satisfies the
stress free conditions on the horizontal surface, i.e.,

	��z
�i+r� = 0 at �� = 0 and �� = � �21�

The scattered wave W�s� is constructed based on the mirror image
method �24�,

W�s� = 	
m=−�

�

Bm
Hm
�1��k�z� − 
�� · � z� − 


�z� − 
��
m

+ Hm
�1��k�z� − 
̄�� · � z� − 
̄

�z� − 
̄�
�−m� �22�

At last, the total displacement field of the half-space W can be
obtained as

W = W�i� + W�r� + W�s� = W0 · eik/2�z�ei�+z�e−i�� + W0 · eik/2�z�e−i�+z�ei��

+ 	
m=−�

�

Bm
Hm
�1��k�z� − 
�� · � z� − 


�z� − 
��
m

+ Hm
�1��k�z� − 
̄�� · � z� − 
̄

�z� − 
̄�
�−m� �23�

We can see that Eq. �23� also satisfies the stress free condition on
the horizontal surface of the wedge. The unknown coefficient Bm
can be determined by the stress free condition on the surface of
the cavity in the same way of solving Am.
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6 Infinite Wedge Problem
Based on the Green’s function and above displacement field

constructed for the elastic half-space containing a cavity �includ-
ing incident field and scattered field�, an infinite wedge model is
obtained by using the division method. That is, we first calculate
the stress field 	xz=���W /�x� on the semi-infinite line B in half-
space �shown in Fig. 3� based on the solution for the displacement
of the elastic half-space with a cavity given in Sec. 5. Then, an
opposite antiplane stress 	̂xz=−	xz is applied on line B; therefore,
the resultant force on line B is equal to zero, i.e., a traction free
surface B is constructed. As a result, the right part of the half-
space from the surface B is equivalent to an infinite wedge.

6.1 Wave Functions in Local Coordinates. In order to cal-
culate the unknown coefficients Am, Bm and load stress on the
surface B conveniently, we need to describe them in the local
coordinates �x ,y�. Introduce the complex coordinates z=x+yi and
z̄=x−yi, where the relation between the local complex coordinate
�z , z̄� and the intermediate coordinate �z� ,z�� and �z� ,z�� is

z� = z� + 
 = zei� + 
 �24�

The position of point force z0� is shown as

z0� = z0� + 
 = z0ei� + 
 �25�

z0� = z0� + 
̄ = z0e−i� + 
̄ �26�

where 
 is the complex coordinate of origin O of local coordinate

in the original coordinate �z� ,z��, and 
=d+hi. 
̄ is the conjugate
of 
, and � is the rotated angle from complex plane �z� ,z�� to
�z , z̄�, as shown in Fig. 1.

In the complex plane �z , z̄�, the expressions �12�, �13�, and �17�
of the displacement induced by point force change into

G�i� =
i

4�
H0

�1��k�z − z0�� �27�

G�r� =
i

4�
H0

�1��k�zei� − z0e−i� + 2hi�� �28�

G�s� = 	
m=−�

�

Am
Hm
�1��k�z�� · � zei�

�z� �
m

+ Hm
�1��k�zei� + 2hi�� · � zei� + 2hi

�zei� + 2hi��
−m� �29�

Similarly, in the complex plane �z , z̄�, the displacement expres-

sions �19�, �20�, and �22� excited by incident SH wave change into

W�i� = W0 · eik/2��zei�+
�ei�+�z̄e−i�+
̄�e−i�� �30�

W�r� = W0 · eik/2��zei�+
�e−i�+�z̄e−i�+
̄�ei�� �31�

W�s� = 	
m=−�

�

Bm
Hm
�1��k�z�� · � zei�

�z� �
m

+ Hm
�1��k�zei� + 2hi�� · � zei� + 2hi

�zei� + 2hi��
−m� �32�

6.2 Stress Functions in Local Coordinates. At first, substi-
tute Eq. �27� into Eq. �6� to obtain the stress functions Grz

�i� and G�z
�i�

of unit source force:

Grz
�i� = �� �G�i�

�z
ei� +

�G�i�

� z̄
e−i��

= −
ik

8
�H1

�1��k�z − z0�� ·
�z − z0�
z − z0

· ei�

+ H1
�1��k�z − z0�� ·

z − z0

�z − z0�
· e−i�
 �33�

G�z
�i� = i�� �G�i�

�z
ei� −

�G�i�

� z̄
e−i��

=
k

8
�H1

�1��k�z − z0�� ·
�z − z0�
z − z0

· ei�

− H1
�1��k�z − z0�� ·

z − z0

�z − z0�
· e−i�
 �34�

and substituting Eq. �28� into Eq. �6�, we obtain the stress func-
tions Grz

�r� and G�z
�r�:

Grz
�r� = �� �G�r�

�z
ei� +

�G�r�

� z̄
e−i��

= −
ik

8 �H1
�1��k�zei� − z0e−i�

+ 2hi�� ·
�zei� − z0e−i� + 2hi�
zei� − z0e−i� + 2hi

· ei��+��

+ H1
�1��k�zei� − z0e−i� + 2hi�� ·

zei� − z0e−i� + 2hi

�zei� − z0e−i� + 2hi�
· e−i��+��


�35�

G�z
�r� = i�� �G�r�

�z
ei� −

�G�r�

� z̄
e−i��

=
k

8�H1
�1��k�zei� − z0e−i� + 2hi�� ·

�zei� − z0e−i� + 2hi�
zei� − z0e−i� + 2hi

· ei��+��

− H1
�1��k�zei� − z0e−i� + 2hi�� ·

zei� − z0e−i� + 2hi

�zei� − z0e−i� + 2hi�
· e−i��+��


�36�

and substituting Eq. �29� into Eq. �6�, we obtain the stress func-
tions Grz

�s� and G�z
�s�:

S
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L h

d
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α
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y y’
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xzτ−

Fig. 3 Illustration of the construction of the infinite wedge
problem by using Green’s function method and the division
technique
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Grz
�s� = �� �G�s�

�z
ei� +

�G�s�

� z̄
e−i�� =

1

2
�k 	

m=−�

�

Am�Hm−1
�1� �k�z��

· � z

�z��
m−1

· ei�m�+�� − Hm+1
�1� �k�z�� · � z

�z��
m+1

· ei�m�−�� + Hm−1
�1� �k�zei� + 2hi�� · � zei� + 2hi

�zei� + 2hi��
−m+1

· e−i��+��

− Hm+1
�1� �k�zei� + 2hi�� · � zei� + 2hi

�zei� + 2hi��
−m−1

· ei��+��
 �37�

G�z
�s� = i�� �G�s�

�z
ei� −

�G�s�

� z̄
e−i�� =

i

2
�k 	

m=−�

�

Am�Hm−1
�1� �k�z��

· � z

�z��
m−1

· ei�m�+�� + Hm+1
�1� �k�z�� · � z

�z��
m+1

· ei�m�−�� − Hm−1
�1� �k�zei� + 2hi�� · � zei� + 2hi

�zei� + 2hi��
−m+1

· e−i��+��

− Hm+1
�1� �k�zei� + 2hi�� · � zei� + 2hi

�zei� + 2hi��
−m−1

· ei��+��
 �38�

Then, in a similar way, substitute Eq. �30� into Eqs. �5� and �6�,
respectively, to obtain the corresponding stress functions 	xz

�i�, 	rz
�i�

and 	�z
�i�:

	xz
�i� = �� �W�i�

�z
+

�W�i�

� z̄
�

= i�kW0 · eik/2��zei�+
�ei�+�z̄e−i�+
̄�e−i�� cos�� + �� �39�

	rz
�i� = �� �W�i�

�z
ei� +

�W�i�

� z̄
e−i��

= i�kW0 · eik/2��zei�+
�ei�+�z̄e−i�+
̄�e−i�� cos�� + � + �� �40�

	�z
�i� = i�� �W�i�

�z
ei� −

�W�i�

� z̄
e−i��

= − i�kW0 · eik/2��zei�+
�ei�+�z̄e−i�+
̄�e−i�� sin�� + � + �� �41�

and substituting Eq. �31� into Eqs. �5� and �6�, respectively, we
then obtain the stress functions 	xz

�r�, 	rz
�r�, and 	�z

�r�:

	xz
�r� = �� �W�r�

�z
+

�W�r�

� z̄
�

= i�kW0 · eik/2��zei�+
�e−i�+�z̄e−i�+
̄�ei�� cos�� − �� �42�

	rz
�r� = �� �W�r�

�z
ei� +

�W�r�

� z̄
e−i��

= i�kW0 · eik/2��zei�+
�e−i�+�z̄e−i�+
̄�ei�� cos�� − � + �� �43�

	�z
�r� = i�� �W�r�

�z
ei� −

�W�r�

� z̄
e−i��

= − i�kW0 · eik/2��zei�+
�e−i�+�z̄e−i�+
̄�ei�� sin�� − � + �� �44�

At last, substituting Eq. �32� into Eqs. �5� and �6�, respectively, we
obtain the stress functions 	xz

�s�, 	rz
�s� and 	�z

�s�:

	xz
�s� = �� �W�s�

�z
+

�W�s�

� z̄
� =

1

2
�kW0 	

m=−�

�

Bm�Hm−1
�1� �k�z��

· � z

�z��
m−1

· eim� − Hm+1
�1� �k�z�� · � z

�z��
m+1

· eim� + Hm−1
�1� �k�zei�

+ 2hi�� · � zei� + 2hi

�zei� + 2hi��
−m+1

· e−i� − Hm+1
�1� �k�zei�

+ 2hi�� · � zei� + 2hi

�zei� + 2hi��
−m−1

· ei�
 �45�

	rz
�s� = �� �W�s�

�z
ei� +

�W�s�

� z̄
e−i�� =

1

2
�kW0 	

m=−�

�

Bm�Hm−1
�1� �k�z��

· � z

�z��
m−1

· ei�m�+�� − Hm+1
�1� �k�z�� · � z

�z��
m+1

· ei�m�−�� + Hm−1
�1� �k�zei� + 2hi�� · � zei� + 2hi

�zei� + 2hi��
−m+1

· e−i��+��

− Hm+1
�1� �k�zei� + 2hi�� · � zei� + 2hi

�zei� + 2hi��
−m−1

· ei��+��
 �46�

	�z
�s� = i�� �W�s�

�z
ei� −

�W�s�

� z̄
e−i�� =

i

2
�kW0 	

m=−�

�

Bm�Hm−1
�1� �k�z��

· � z

�z��
m−1

· ei�m�+�� + Hm+1
�1� �k�z�� · � z

�z��
m+1

· ei�m�−�� − Hm−1
�1� �k�zei� + 2hi�� · � zei� + 2hi

�zei� + 2hi��
−m+1

· e−i��+��

− Hm+1
�1� �k�zei� + 2hi�� · � zei� + 2hi

�zei� + 2hi��
−m−1

· ei��+��
 �47�

6.3 Displacement and Stress Field of the Wedge. The un-
known coefficients Am and Bm in the displacement expressions
can be determined by the stress free conditions on the surface of
the cavity as follows:

Grz
�i� + Grz

�r� + Grz
�s� = 0 at r = a �48�

	rz
�i� + 	rz

�r� + 	rz
�s� = 0 at r = a �49�

Using Fourier expansion, we can obtain

	
n=−�

�

�n = 	
n=−�

�

	
m=−�

�

Am · �nm at r = a �50�

	
n=−�

�

�n = 	
n=−�

�

	
m=−�

�

Bm · �nm at r = a �51�

where

�n =
1

2�
�

0

2�

�Grz
�i� + Grz

�r�� · e−in�d�

�nm = −
1

2�
�

0

2�

Grz
�s� · e−in�d�

�n =
1

2�
�

0

2�

�	rz
�i� + 	rz

�r�� · e−in�d�
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�nm = −
1

2�
�

0

2�

	rz
�s� · e−in�d�

Therefore, the unknown coefficients Am and Bm can be obtained
by solving the linear algebraic equations �50� and �51�,
respectively.

Based on the wave functions �27�–�32�, and considering the
effect of the stress 	̂xz=−	xz that loaded on the surface B, we can
get the antiplane displacement of the infinite wedge with a circular
cavity as

W�t� = �W�i� + W�r� + W�s�� −�
y1

y2

	xz · �G�i� + G�r� + G�s�� · idy

�52�

where 	xz=	xz
�i�+	xz

�r�+	xz
�s�, at x=−L sin��+arctan�d /h�� and y

� �y1 ,+��, y1 is the y position of the initial point of surface B.
Then, the stress field in the wedge is

	�z
�t� = �	�z

�i� + 	�z
�r� + 	�z

�s�� −�
y1

y2

	xz · �G�z
�i� + G�z

�r� + G�z
�s�� · idy �53�

In this paper, we define the DSCF as the ratio of the stress 	�z
�t�

�induced by total displacement field� to the stress 	0 �induced by
incident wave�. For the steady-state SH waves, the DSCF is given
by

	�z
� = �	�z

�t�/	0� �54�

where 	0=�kW0. The wave number of incident wave can be ex-
pressed as the ratio of the diameter of the cavity 2a to the wave-
length � of the incident wave, namely,

� = ka/� = �a/cs� = 2a/� �55�

which represents a dimensionless frequency �a /cs�.

7 Numerical Examples and Results
With the novel method developed in Secs. 2–6, we can calcu-

late the harmonic dynamic stress field of the infinite wedge with
the circular cavity and study the effect of the apex angle of the
wedge and the cavity position on the DSFC on the surface of the
cavity.

To validate our method developed in this study, the apex angle
of the wedge is at first set �=90 deg �2�=180 deg�, by which
the wedge problem degenerates to a half-space problem, which is
the classical problem solved by Lee and Trifunac �25,26�. Figures
4�a� and 4�b� illustrate the surface displacement when the incident
angle �=90 deg and the wave number �=0.5 and 1.0 at the nor-
malized distance between the vertex and the center of the cavity,
L /a=1.5 and 5.0, respectively. It can be seen that our predictions
agree very well with the numerical results of Lee and Trifunac
�25,26�. Then, we set the distance between the cavity and the
vertex of the wedge in our problem being large enough �e.g.,
L /a=10,000� so that the influence of the cavity on the surface
motion can be neglected �we double checked this by selecting
different value of L /a�, then the problem can be degenerates into
the problem solved by Sanchez-sesma �27�. We chose different
apex angles of the wedge, 2�=60,75,90,105,120, . . . ,225 deg,
and the incident SH wave comes along the bisector line of wedge
with frequency k=3�. The displacement amplitude of the vertex
is illustrated in Fig. 4�c�. As we can see the predications of our
method agree very well with the results of Sanchez-sesma �27�.

Figure 5–7 show the DSCF at the surface of cavity at various
apex angle �=90 deg, �=75 deg and 45 deg, respectively, with
various incident angle �=0,45,90 deg and different distance be-
tween the vertex and the center of the cavity L=10,20,30 �note
that the center of cavity is on the bisector line of wedge angle�.
We will discuss the condition that the center is biased from the
bisector line later, and the wave frequency �=0.1,1.0,2.0, respec-
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parison with the results of Lee and Trifunac †25,26‡ at L /a
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Fig. 5 The DSCF on the cavity at �=90 deg, where „a… �
=0 deg, �=0.1; „b… �=0 deg, �=1.0; „c… �=0 deg, �=2.0;
„d… �=45 deg, �=0.1; „e… �=45 deg, �=1.0; „f… �=45 deg, �
=2.0; „g… �=90 deg, �=0.1; „h… �=90 deg, �=1.0; and „i… �
=90 deg, �=2.0
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tively. For example, Figs. 5�a�, 5�d�, and 5�g� show the variation
of the DSCF on the cavity with different incident angles �
=0,45,90 deg at a constant incident frequency �=0.1. Figures
5�b�, 5�e�, and 5�h� and Figs. 5�c�, 5�f�, and 5�i� show the corre-
sponding DSCF on cavity at different frequencies �=1.0 and �
=2.0, respectively. We can see that the influence of the incident
angles on the DSCF can be obtained through studying the panels
in vertical alignment at constant incident frequencies �e.g., panels
a, d, and g; panels b, e, and h; panels c, f, and i in Fig. 5�, and in
a similar manner, the influence of the incident frequencies on the
DSCF can be obtained through studying the panels in horizontal
alignment at constant incident angles �e.g., panels a–c; panels d–f;
panels g–i in Fig. 5�. Figures 6 and 7 are illustrated in the same
way as that of Fig. 5.

At low frequency, �=0.1, for different incidence angles ��
=0,45,90 deg�, and different wedge angles �=90 deg, �=75

deg and �=45 deg, the DSCF around the loop are approximately
periodically symmetric, which indicates that the response of
wedge at �=0.1 is similar to a static response, as shown in Figs.
5�a�, 5�d�, and 5�g�, Figs. 6�a�, 6�d�, and 6�g�, and Figs. 7�a�, 7�d�,
and 7�g��. At high frequencies �=1.0 �Figs. 5, 6, 7�b�, 7�e�, and
7�h�� and �=2.0 �Figs. 5, 6, 7�c�, 7�f�, and 7�i��, the stress con-
centration factors exhibit dynamic character, losing periodic sym-
metry. It is also noted that the position change of the cavity �L
=10,20,30� does not influence the DSCF on the surface of cavity
when �=90 deg with horizontal incidence �=0 deg �see Figs.
5�a�–5�c��. The underlying mechanism is that the incident wave
horizontally penetrates the medium without the disturbance by the
reflect wave from the boundary. From Figs. 5–7, we can see that
the DSCF around the cavity decreases gradually with the increase
in the incident angle of the incident waves at cavity position of
L=10. It seems that the oblique and vertical incidence induce
lower DSCF in comparison with the horizontal incident, which is
caused by the scattering and diffraction of the SH-waves by the
wedge and internal cavity.

The influence of wedge angles on the DSCF is studied at cavity
position L=30 and the incident angle �=45 deg, as shown in Fig.
8. We can see that the stress fluctuation on the surface of cavity is
smaller at low frequency �=0.1, and the apex angle has less effect
on the stress fluctuation; in contrast, the stress fluctuation is much
higher at higher frequency �=1.0 and 2.0, and the apex angle has
significant influence on the stress fluctuation.

Figure 9 shows the effect of the positions of the cavity on
DSCF when the center of the cavity is biased from the bisector of
the wedge angle at �=45 deg in comparison with previous cal-
culations when the center of the cavity is on the bisector. In this
calculation, the line OO� is biased from the bisector by 22.5 deg,
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i.e., the angle between the line OO� and horizontal surface S
changes from 45 deg �see Figs. 9�a�, 9�c�, and 9�e�� to 22.5 deg
�see Figs. 9�b�, 9�d�, and 9�f��. The incident angles are �
=0,45,90 deg, the incident frequencies are �=0.1,1.0,2.0, re-
spectively, and the cavity position is L=30. Figures 9�b�, 9�d�, and
9�f� exhibit several interesting observations: compared with the
panel on the left side �Figs. 9�a�, 9�c�, and 9�e��, the DSCF of the
biased cavity becomes higher at the frequencies of �=0.1 and �
=2.0, but becomes lower at the frequency of �=1.0.

At last, a quarter space containing a cavity with different cavity
position L=10,1.5,1.45,1.43 �continuously decreases the dis-
tance between the cavity center and apex� are calculated for the
incident angle �=45 deg and incident frequency �=2.0, as
shown in Fig. 10. We can see that the DSCF increases rapidly as

the cavity gets close to the wedge apex, and the DSCF becomes
singular when the cavity is close enough to the wedge apex.

8 Conclusions
A novel method is developed for studying the antiplane dy-

namic problem of an infinite wedge with a circular cavity by
adopting the Green’s function, complex functions, and multipolar
coordinates method. This approach allows us to transfer the infi-
nite wedge problem to an equivalent half-space problem by using
Green’s function method. The analytical expressions for the dis-
placement and stress fields of the wedge are then derived. Based
on the solution for the stress field of the wedge, the stress on the
surface of the cavity are calculated at different wedge angles,
location of the cavity, incident angles, and frequencies of the dy-
namic load. We find that the wedge angle, cavity location, and
incident angle and frequency of the load have significant effect on
the DSCF. The DSCFs grow rapidly as the distance between the
cavity and wedge apex reduces. When the cavity is close enough
to the boundary of the wedge, the DSCF on the loop exhibits
singularity. The dynamic stress analysis method for an infinite
wedge problem developed in this paper is of practical importance
in engineering design, such as dam design and earthquake engi-
neering.
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An Invariant Analysis of the
Bending of Three Edge-Bonded
Dissimilar Plates
A representation theorem is proved for the solution of the problem of two perfectly
bonded isotropic semi-infinite plates under the influence of an arbitrary vertical load
located in the midplane of the interior of one of them. Its function is to show that if the
deflection of an unbounded isotropic plate under the influence of an arbitrary vertical
load is known, then the corresponding deflections for two perfectly bonded isotropic
semi-infinite plates are explicitly determinable, solely, and compactly in terms of the
known deflection. Indeed, whatever the nature of the mechanism of loading is, the in-
duced bending moments and shears in the two bonded plates are determinable by the
process of differentiation only. A systematic repeated application of the theorem then
yields a well-structured series solution when the arbitrary vertical load is arbitrarily
located in a compound plate comprising two semi-infinite dissimilar isotropic plates
separated by another dissimilar isotropic plate strip of finite breadth. As an application,
we determine the effective elastic constants of a compound plate comprising a homoge-
neous isotropic plate in which a finite number of isotropic parallel plate strips of small
breadths are embedded at such distances apart that their interaction effects may be taken
as independent of one another. �DOI: 10.1115/1.3130813�

Keywords: isotropic materials, compound plates, bending, effective elastic constants,
repeated reflection

1 Introduction
Maxwell �1� showed that if we have a complete theory of elec-

trical images in the case of two dielectric media separated by a flat
surface, then the corresponding complete theory of electrical im-
ages in the case of three dielectric media separated by two parallel
flat surfaces may be systematically constructed by repeatedly ap-
plying the known theory for the two media.

It seems, however, that this powerful method is less known in
linear elasticity because comparably intricate procedures abound
in the literature when considering the effect of an elastic singular-
ity operative in or near a surface layer. This may be attributable to
the fact that while the solutions of electrostatic problems are gen-
erally representable by harmonic functions, the solutions of linear
isotropic elasticity problems are generally representable by bihar-
monic functions, with the Cartesian coordinates occurring explic-
itly in the solution.

Nevertheless, Maxwell’s method is concise, economical, and
generally employable, usually yielding the precise form of the
unique dependence of the global solution on only the influencing
function and the material properties of the constituents of the
compound medium, as well as reducing the rigor and effort re-
quired in calculating field components.

This repeated reflection method will therefore be employed in
this paper to determine the deflection of a compound plate com-
prising two dissimilar isotropic semi-infinite plates separated by
another dissimilar isotropic plate strip of finite breadth, under the
influence of an arbitrary vertical load arbitrarily located in the
compound plate. It will therefore require establishing first the
complete theory of elastic images in the case of two dissimilar
isotropic semi-infinite plates separated by a straight line, under the
influence of an arbitrary vertical load located in the interior of one

of the two perfectly bonded plates. Although it turns out that the
calculation of the required deflections of the two bonded plates
requires the two operations of differentiation and integration, the
calculation of the desired bending moments and Kirchoff shears
requires the process of differentiation only, whatever the nature of
the mechanism of loading is.

The general solution subsequently constructed by repeatedly
applying the theory thus obtained in the case of two media to the
case of three plates separated by two parallel straight lines, is then
employed to determine the effective flexural rigidity and Poisson’s
ratio of a compound plate comprising a homogeneous isotropic
plate in which N parallel plate strips of small breadths are embed-
ded, at such distances apart that their interaction effects may be
considered as independent of one another. Maxwell �1� used a
similar approach to determine the effective resistance of a com-
pound medium consisting of a dielectric medium of resistance k2
in which identical dielectric small spheres of resistance k1 are
disseminated, whose separate effects do not depend on their inter-
ference.

2 Maxwell’s Motivating Problem
With a view to indicating the broad lines of the treatment of the

elastic compound plate problem, the motivating problem of Max-
well �1� will first be revisited in order to present his solution in a
compact well-structured manner, which is invariant, with respect
to the choice of the physical nature of the influencing electrical
singularity, and which also takes account of the companion prob-
lem when the arbitrary influencing singularity is located inside the
separating dielectric plate.

Therefore, let x, y, and z be the three-dimensional rectangular
Cartesian coordinates, and suppose that the three regions ��x�
�� , �y��� ,−��z�0�, ��x��� , �y��� ,0�z�H�, and ��x�
�� , �y��� ,H�z��� are occupied by three dielectric media
whose specific resistances are k1, k2, and k3, respectively; the
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electrostatic potentials and the electric currents being continuous
at the two parallel plane surfaces of separation between the three
media.

First, let us suppose that the first medium of resistance k1 con-
tains an arbitrary influencing singularity, which, if this first me-
dium had been infinitely extended, is characterized by the har-
monic electrostatic potential V �x ,y ,z�. Then, in the actual case
under consideration, the potentials V1, V2, and V3 induced in the
three domains −��z�0, 0�z�H, and H�z�� can be calcu-
lated without any complexity by the principle of repeated reflec-
tion to yield the solution

V1 = V�x,y,z� − k12V�x,y,− z�

+ k32�1 − k12
2 ��

n=1

�

�k12k32�n−1V�x,y,2nH − z�

V2 = �1 + k21��V�x,y,z� + k32�
n=1

�

�k12k32�n−1V�x,y,2nH − z�

+ �
n=1

�

�k12k32�nV�x,y,2nH + z��
V3 = �1 − k12��1 + k32��V�x,y,z� + �

n=1

�

�k12k32�nV�x,y,2nH + z��
provided that kij = �ki−kj� / �ki+kj�, which shows that only two
combinations of the resistances k1, k2, and k3, namely, k12 and k32,
are required to characterize the electrostatics of the compound
medium, since kij =−kji, and that at great distances from the inter-
faces, the potential V3 on the other side of the interface plate
assumes the form V3

�= �1−k12��1+k32�V0�x ,y ,z� / �1−k12k32�,
where V0�x ,y ,z� is the value of the influencing potential V at the
origin.

This solution is clearly in complete agreement with that of
Maxwell �1� in the special case when the influencing singularity is
a point charge E located at the point �0, 0, −h� in the first medium,
for which V�x ,y ,z�=E · �x2+y2+ �z+h�2�−1/2. In this case, we can
reduce the series solution to definite integrals by the relation

�r2 + z2�−1/2 =	
0

�

J0�rt�e−IzItdt, r2 = x2 + y2

where J0 denotes the ordinary Bessel function of zero order. Thus,

V3 = E�1 − k12��1 + k32�	
0

�

J0�rt�e−t�z+h��1 − k12k32e
−2Ht�−1dt

Next, suppose that the arbitrary singularity is operative inside
the separating medium of resistance k2, which, if this medium
were infinitely extended, is characterized by the potential V
�x ,y ,z�. Then, with kij as previously defined, an application of the
principle of images again yields the new solution

V1 = �1 + k12��V�x,y,z� + k32�
n=1

�

�k12k32�n−1
V�x,y,2nH − z�

+ k12V�x,y,z − 2nH���

V2 = V�x,y,z� + k12V�x,y,− z� + k32�
n=1

�

�k12k32�n−1
V�x,y,2nH − z�

+ k12V�x,y,z − 2nH�� + �
n=1

�

�k12k32�n
V�x,y,2nH + z�

+ k12V�x,y,− 2nH − z��

V3 = �1 + k32��V�x,y,z� + k12V�x,y,− z� + �
n=1

�

�k12k32�n
V�x,y,2nH

+ z� + k12V�x,y,− 2nH − z���
which can again be reduced to definite integrals in particular
cases.

We may remark that as the repeated reflection is effected, the
images get farther and farther away from the two parallel plane
interfaces, and their influence therefore gets less and less.

If the influencing singularity is a point charge E located at the
point �0, 0, h� inside the separating plate of resistance k2, and if
we again put r2=x2+y2, then proceeding to the limit as r→�, we
find that

V2 = − E�1 + k12��1 +
�1 + k12�

k12�1 − k12k32�
�log r

This shows that the potential V2 gives rise to a mainly two-
dimensional current when the distance from the influencing point
charge is a moderate multiple of the thickness of the separating
plate.

There is no difficulty whatsoever in generalizing the foregoing
introductory analysis to conduction through any number of
bonded plane layers separating two other dissimilar media, but the
above introductory analysis is all that we require in this paper.

3 A Representation Theorem
In further preparation for the analysis of the problem of three

perfectly edge-bonded elastic plates separated by two parallel
straight lines, we first establish a solution representation theorem
in the case of two elastic plates separated by a single straight line.
Its function is to transform the solution for an unbounded plate
under the influence of an arbitrary vertical load into the corre-
sponding solution for two perfectly edge-bonded dissimilar semi-
infinite isotropic plates.

Let x and y be the two-dimensional rectangular Cartesian coor-
dinates, and suppose that the two domains ��x��� ,−��y�0�
and ��x��� ,0�y��� are occupied by two dissimilar isotropic
plates of elastic moduli �D1 ,v1� and �D2 ,v2�, respectively, as
shown in Fig. 1, a perfect bond being maintained along the inter-

Fig. 1 Singularity in the interior of one of the two joined semi-
infinite plates
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face ��x��� ,y=0�, with D1 and D2 standing for flexural rigidities,
while v1 and v2 designate corresponding Poisson’s ratios.

Let an arbitrary vertical load be applied at the point ��1 ,�2�
inside the second plate of moduli �D2 ,�2�, which in an unbounded
plate ��x��� , �y���� is characterized by the deflection W�x ,y�. It
is desired to determine the induced deflections W1�x ,y� and
W2�x ,y� in the regions y�0 and y�0, respectively, consistent
with the perfect bond continuity conditions

W1 = W2,
�W1

�y
=

�W2

�y
�1�

M2
�1� = M2

�2�, �V2
�1� = �V2

�2�

at y=0, for all x, where M1 and M2 are bending moments, while

�V1 and �V2 are Kirchoff shears, subscripts 1 and 2 in parentheses
are used to distinguish between the regions y�0 and y�0, re-
spectively. Generally �2�,

M1 = − D��2W − �1 − ��
�2W

�y2 �
M2 = − D���2W + �1 − ��

�2W

�y2 �
�V1 = − D

�

�x
��2W + �1 − ��

�2W

�y2 � �2�

�V2 = − D
�

�y
��2 − ���2W − �1 − ��

�2W

�y2 �
�4W = 0

where �2 stands for the two-dimensional Laplacian operator.
For a bending hot spot located at the point ��1 ,�2� in an infinite

homogeneous plate, W�x ,y�=c1 log r1, where c1 is a constant and
r1

2= �x−�1�2+ �y−�2�2, whereas for a concentrated vertical load ap-
plied at the same point in an infinite plate W�x ,y�=c2r1

2 log r1,
where c2 is another constant �2�. With r2=x2+y2, we may also
note the formula

2		 log rdydy = r2 log r −
3

2
�y2 − x2� + 2x�y tan−1� y

x



− x log r�
which shows that the biharmonic function r2 log r is representable
in terms of the harmonic functions �y2−x2�, log r, and
y tan−1�y /x�−x log r. Clearly, therefore, and as first noted by Al-
mansi �3� in his investigation of the general solution of the poly-
harmonic equation �2n�=0, for any positive integer n, if we are
given any two-dimensional biharmonic function �, then harmonic
functions F and G are determinable, such that � is representable
in at least one of the forms:

F + xG, F + yG, F + r2G

the choice being guided by the boundary-value problem that may
be under investigation.

Consequently, in view of the semi-infinite domains of definition
of the two materials constituting the present composite plate, we
assume that the influencing function W�x ,y� due to the presence
of an arbitrary singularity at the point ��1 ,�2� admits the Fourier
integral representation,

W�x,y� =	
0

�

�f�t� + ytg�t��ety cos txdt �3�

when y��2, where f�t� and g�t� are known functions of t and �2
being immaterial in the subsequent analysis if cos tx is replaced
by sin t�x−�1� or by cos t�x−�1�.

Next, guided by Eq. �3� and the regularity requirement that the
perturbational part of the desired deflection must vanish as y
→�, we construct W1�x ,y� and W2�x ,y� as follows:

W1 =	
0

�

�F1�t� + ytG1�t��ety cos txdt

�4�

W2 =	
0

�

�
F2�t� + ytG2�t��e−ty + 
f�t� + ytg�t��ety�cos txdt

where the weighting functions Fi�t� and Gi�t�, i=1,2, are to be
determined in terms of the known functions f�t� and g�t�, consis-
tent with the continuity conditions in Eq. �1�.

Substitution of Eq. �4� into Eq. �2�, and the application of Eq.
�1�, therefore yield the connections

F1 = f�1 − �12� + g	12, G1 = g�1 − 
12�
�5�

F2 = − f�12 + g	12, G2 = − �2f + g��12

where

�ij = �Di�1 − �i� − Dj�i − � j��/�Di�1 − �i� + Dj�3 + � j��


ij = �Di�3 + �i� − Dj�3 + � j��/�Di�3 + �i� + Dj�1 − � j�� �6�

	ij = 1
2 �
ij − �ij�

having no summation on any repeated index and being clear that
�ij�−� ji, 
ij�−
 ji.

This completes the analysis of the two-phase plate problem. On
noting that the representation in Eq. �3� is equivalent to the re-
sults,

	
0

�

f�t�ety cos txdt = W�x,y� −
1

2
y	 �2W�x,y�dy

�3��

	
0

�

tg�t�ety cos txdt =
1

2	 �2W�x,y�dy

the substitution of Eq. �5� into Eq. �4� and comparison of the
resulting expressions with Eq. �3� yield the desired uniqueness
theorem as follows: If the deflection W�x ,y� of an unbounded
plate ��x��� , �y����, under an arbitrary vertical load applied in
the upper region y�0 is known, then the required deflections W1
and W2 for two perfectly bonded semi-infinite isotropic plates
occupying the domains ��x��� ,−��y�0� and ��x��� ,0�y
���, respectively, when the same arbitrary vertical load is ap-
plied to the upper plate ��x��� ,0�y���, are explicitly deter-
minable in terms of the known influencing deflection W in accor-
dance with the relations

W1 = £21�y�W�x,y�
�7�

W2 = W�x,y� + L21�y�W�x,− y�
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where the operators L21�y� and £21�y� are defined by

L21�y� = − �12�1 − 2y
�

�y
+ y2�2� +

1

2
	12	 dy	 �2
 �dy

�8�

£21�y� = 1 − �12 +
1

2
y��12 − 
12�	 �2
 �dy +

1

2
	12	 dy	 �2
 �dy

showing that only two combinations of the elastic moduli �D1 ,�1�
and �D2 ,�2�, namely, �12 and 
12, are required in the character-
ization of the deflection of the perfectly joined semi-infinite
plates.

As will be apparent from the preceding analysis, the general
manner in which the dependence of W1 and W2 on W is estab-
lished is at least as important as the recognition of the uniqueness
itself. Moreover, since neither medium has preferred status, the
sense of loading is immaterial. Thus, if the loading were applied
to the first plate of moduli �D1 ,�1�, then the final result would be

W1 = W�x,y� + £12�y�W�x,− y�
�9�

W2 = L12�y�W�x,y�

where

L12�y� = 1 − �21 +
1

2
y��21 − 
21�	 �2
 �dy +

1

2
	21	 dy	 �2
 �dy

�10�

£12�y� = − �21�1 − 2y
�

�y
+ y2�2� +

1

2
	21	 dy	 �2
 �ydy

while �21, 
21, and 	21 are once again defined by Eq. �6�. We shall
also require the operators

L23�y� = − �32�1 − 2y
�

�y
+ y2�2� +

1

2
	32	 dy	 �2
 �ydy

�11�

£23�y� = 1 − �32 +
1

2
y��32 − 
32�	 �2
 �dy +

1

2
	32	 dy	 �2
 �dy

whose structures are governed by the operators in Eq. �8�. It may
be readily verified that the representation theorem �Eq. �7�� re-
duces to that of Aderogba �4� in the special case when the influ-
encing deflection W�x ,y� is harmonic.

Moreover, since it also follows from Eqs. �7� and �8� that

�2W1 = �1 − 
12��2W�x,y�

�2W1

�y2 = ��1 − �12�
�2

�y2 +
1

4
��12 − 
12��3 + 2y

�

�y

�2�W�x,y�

�2W2 = �2W�x,y� − �12��2 − 2
�

�y
�2

�

�y
− y�2
�W�x,− y�

�2W2

�y2 =
�2

�y2W�x,y� +
1

4
�
12 − �12��2W�x,− y�

− �12� �2

�y2 −
�

�y
�1 + y

�

�y

�2

�

�y
− y�2
�W�x,− y�

the substitution of these expressions into Eq. �2� leads to the con-
clusion that if we know the deflection when the elastic homoge-
neous isotropic infinite plate is subjected to an arbitrary vertical
load, then the corresponding bending moments and Kirchoff
shears for two perfectly bonded isotropic semi-infinite plates can
be obtained by differentiation of the known deflection for the
infinite plate.

Specifically,

M1
�1� = − D1��1 − 
12 −

1

4
�1 − �1���12 − 
12��3 + 2y

�

�y

��2

− �1 − �1��1 − �12�
�2

�y2�W�x,y�

M2
�1� = − D1���1�1 − 
12� +

1

4
�1 − �1���12 − 
12��3 + 2y

�

�y

��2

+ �1 − �1��1 − �12�
�2

�y2�W�x,y�

�12�

�V1
�1� = − D1

�

�x
��1 − 
12 +

1

4
�1 − �1���12 − 
12��3 + 2y

�

�y

��2

+ �1 − �1��1 − �12�
�2

�y2�W�x,y�

�V2
�1� = − D1

�

�y
���2 − �1��1 − 
12� −

1

4
�1 − �1���12 − 
12��3

+ 2y
�

�y

��2 − �1 − �1��1 − �12�

�2

�y2�W�x,y�

M1
�2� = − D2���2 − �1 − �2�

�2

�y2�W�x,y� − �12��2 − 2
�

�y
�2

�

�y

− y�2
�W�x,− y� + �12�1 − �2�� �2

�y2 −
�

�y
�1 + y

�

�y

�2

�

�y

− y�2
�W�x,− y� +
1

4
�1 − �2���12 − 
12��2W�x,− y��

M2
�2� = − D2���2�

2 + �1 − �2�
�2

�y2�W�x,y� − �2�12��2

− 2
�

�y
�2

�

�y
− y�2
�W�x,− y� − �12�1 − �2�� �2

�y2

−
�

�y
�1 + y

�

�y

�2

�

�y
− y�2
�W�x,− y�

−
1

4
�1 − �2���12 − 
12��2W�x,− y��

�13�

�V1
�2� = − D2

�

�x
���2 + �1 − �2�

�2

�y2�W�x,y�

− �12��2 − 2
�

�y
�2

�

�y
− y�2
�W�x,− y� − �12�1 − �2�

�� �2

�y2 −
�

�y
�1 + y

�

�y

�2

�

�y
− y�2
�W�x,− y�

−
1

4
�1 − �2���12 − 
12��2W�x,− y��

�V2
�2� = − D2

�

�y
���2 − �2��2 − �1 − �2�

�2

�y2�W�x,y� − �12�2 − �2�

���2 − 2
�

�y
�2

�

�y
− y�2
�W�x,− y� + �12�1 − �2�� �2

�y2

−
�

�y
�1 + y

�

�y

�2

�

�y
− y�2
�W�x,− y� +

1

4
�1 − �2���12

− 
12��2W�x,− y��
061009-4 / Vol. 76, NOVEMBER 2009 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



These relations clearly facilitate the routine calculation of interfa-
cial jump quantities, since local values of moments and shears are
of importance in the bending of compound materials.

4 The Three-Phase Compound Plate
Suppose now that three dissimilar plates with moduli 
�D1 ,�1��,


�D2 ,�2��, and �D3 ,�3� occupy the regions ��x��� ,−��y�0�,
��x��� ,0�y�H�, and ��x��� ,H�y���, respectively, as
shown in Fig. 2, the three plates being perfectly bonded at the
interfaces ��x��� ,y=0� and ��x��� ,y=H�.

First, we suppose that an arbitrary vertical load is applied in the
interior of the first medium of moduli �D1 ,�1�, which in an un-
bounded medium ��x��� , �y���� is characterized by the deflec-
tion W�x ,y�. Then, repeated application of the representation theo-
rem �Eq. �7�� at the two parallel straight line interfaces
immediately yields the formulas

W1 = W�x,y� + £12�y�W�x,− y� + £21�y��
n=1

�

L�n��y�L12�2nH

− y�W�x,2nH − y�

W2 = L12�y�W�x,y� + �
n=1

�

L�n��y�L12�2nH − y�W�x,2nH − y�

+ L21�y��
n=1

�

L�n��− y�L12�2nH + y�W�x,2nH + y� �14�

W3 = £23�H − y��L12�y�W�x,y� + L21�y��
n=1

�

L�n��− y�L12�2nH

+ y�W�x,2nH + y��
for the desired deflections in the three regions ��x��� ,−��y
�0�, ��x��� ,0�y�H�, and ��x����, H�y���, respectively,
where for any positive integer n,

L�n��y� = L23�H − y�L21�2H − y� ¯ L21�2�n − 1�H − y�L23��2n

− 1�H − y� �15�
Two similar sets of formulas, involving Airy stress function and

Love strain function, have been established by Aderogba �5,6� in
the case of extensional elasticity. We may also note that if the
interface plate of moduli �D2 ,�2� is very much softer than the

other constituents of the compound plate, then it tends to prevent
the transmission of singularities from the influencing medium of
moduli �D1 ,�1� to the outer medium of moduli �D3 ,�3� on the
other side of the interface plate, and vice versa. It may also be
noted from Eq. �14� that the distant effect in the third medium due
to the specification of an arbitrary vertical load in the first medium
is characterized by the deflection

W3
� = £23�y��L12�y�W0�x,y� + �

n=1

�

�L21�y�L23�y��nL12�y�W0�x,y��
�16�

a formula that will be useful in subsequent analysis, where W0 is
the value of W when the singularity is located at the origin.

Next, we suppose that the arbitrary vertical load is applied in
the interior of the interface plate of moduli �D2 ,�2�, which in an
unbounded plate ��x��� , �y���� is characterized by the deflec-
tion W�x ,y�. Then, by again repeatedly applying the representa-
tion theorem �Eq. �7�� at the two parallel straight line interfaces
��x��� ,y=0� and ��x��� ,y=H�, we arrive at the formulas

W1 = £21�y��W�x,y� + �
n=1

�

L�n��y�
W�x,2nH − y� + L21�2n + 1

− y�W�x,− 2nH + y���
W2 = W�x,y� + L21�y�W�x,− y� + �

n=1

�

L�n��y��W�x,2nH − y�

+ L21�2nH − y�W�x,− 2nH + y�� + L21�y��
n=1

�

L�n��− y�

��W�x,2nH + y� + L21�2nH + y�W�x,− 2nH − y�� �17�

W3 = £23�H − y��W�x,y� + L21�y�W�x,− y� + L21�y��
n=1

�

L�n��− y�

�
W�x,2nH + y� + L21�2nH + y�W�x,− 2nH − y���
where the operators Lij�y�, £ij�y�, and L�n��y� assume their previ-
ous values.

The special case of a plate strip �0� �x��� , 0�y�H�,
bonded to two rigid constraints and subjected to an arbitrary ver-
tical load in its interior, may be deduced from Eq. �17� by making
D1=�, D3=�, which leads directly to W1=0, W3=0, while

W2 = W�x,y� + ��y�W�x,− y� + �
n=1

�

��n��y��W�x,2nH − y� + ��2nH

− y�W�x,− 2nH + y�� + ��y��
n=1

�

��n��− y��W�x,2nH + y�

+ ��2nH + y�W�x,− 2nH − y�� �18�

in which

��y� = − 1 + 2y
�

�y
− y2�2

�19�

��n��y� = ��H − y���2H − y� ¯ ��2�n − 1�H − y����2n − 1�H − y�

Fig. 2 Singularity outside a plate separating two semi-infinite
plates
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In passing, we may remark, by an examination of Eq. �17�, that
only four combinations of the elastic moduli �D1 ,�1�, �D2 ,�2�,
and �D3 ,�3�, namely, �12, 
12, �32, and 
32, are required for the
determination of the three deflections: W1, W2, and W3 when the
singularity acts inside the interface plate of moduli �D2 ,�2�,
whereas an examination of Eq. �14� reveals that only six combi-
nations of these elastic moduli are required in the determination of
the three deflections when the singularity acts inside the first plate
of moduli �D1 ,�1�.

5 Applications
Modern theories of compound media are incomplete unless

they include a discussion of the overall properties of such com-
pound media. We therefore return to formulas �14�, which repre-
sent the solution when an arbitrary vertical load is applied to the
first medium of moduli �D1 ,�1�.

Let us suppose that D3=D1 and �3=�1, so that the case is that
of a plate strip of moduli �D2 ,�2� embedded in a matrix medium
of moduli �D1 ,�1�. Then, by Eq. �16�, the dominant distant effect
on the other side of the embedded plate strip is

W3
� = £21�y�L12�y�W0�x,y� �20�

If the influencing deflection W�x ,y� arises from a bending hot spot
located at the point �0,−h� in the first medium, so that W�x ,y�
=K log r0, where r0

2=x2+ �y+h�2, while K is a constant, then Eq.
�20� may be approximated to

W3
� = 4KD2�D1�1 − �1� + D2�3 + �2��−1log r �21�

where

r2 = x2 + y2 �22�

If there are N identical small plate strips of moduli �D2 ,�2�
embedded in the matrix medium of moduli �D1 ,�1�, at such dis-
tances from one another that their interaction effects may be taken
as independent of one another, then if these plate strips are all
enclosed within a medium of moduli �D0 ,�0�, which itself is em-
bedded in the matrix medium of moduli �D1 ,�1�, we will have the
equivalence relation

ND2/�D1�1 − �1� + D2�3 + �2�� = D0/�D1�1 − �1� + D0�3 + �0��
�23�

On the other hand, if the influencing deflection W�x ,y� arises
from a concentrated vertical load at the same point �0,−h�, then
Eq. �20� will similarly lead to the equivalence relation

ND2/�D1�3 + �1� + D2�1 − �2�� = D0/�D1�3 + �1� + D0�1 − �0��
�24�

The solution of the simultaneous Eqs. �23� and �24� is given by

D0 =
D1D2N

D1 + D2�1 − N�
�25�

�0 = − 2 − �1 + �2 + �1 + �2�/N
These D0 and �0, therefore, represent the effective flexural ri-

gidity and Poisson’s ratio of a compound plate comprising a ho-
mogeneous isotropic plate of moduli �D1 ,�1� in which are embed-
ded N small plate strips, each of moduli �D2 ,�2�, at such distances
from one another that their interaction effects may be taken as
independent from one another. If N=1, then we obtain the ex-
pected result D0=D2 and �0=�2.

Finally, let us consider the problem in which two isotropic quar-
ter plates of moduli �D1 ,�1� and �D2 ,�2� occupy the quarter
planes �0�x�� ,−��y�0� and �0�x�� ,0�y���, respec-
tively, a perfect bond being maintained at the interface �0�x
�� ,y=0�, while the edge �x=0, �y���� is rigidly clamped. An

arbitrary singularity is applied to the upper quarter plate of moduli
�D2 ,�2�, which in an unbounded plate ��x��� , �y���� is charac-
terized by the deflection W�x ,y�.

Clearly, by virtue of the representation law �Eq. �7��, if D1
=D2 and �1=�2, then the complete solution for the clamped semi-
infinite plate �0�x�� , �y���� is given by

W��x,y� = W�x,y� + L�x�W�− x,y� �26�

where

L�x� = − 1 + 2x
�

�x
− x2�2 �27�

Equation �26�, of course, satisfies the clamped conditions

W��x,y� = 0,
�W�

�x
�x,y� = 0 �28�

at the edge �x=0, �y����.
In the actual case when �D1 ,�1�� �D2 ,�2�, the desired com-

plete solution for the two edge-bonded dissimilar quarter plates is
given by the representation law �Eq. �7�� in the explicit form

W1 = £21�y��W�x,y� + L�x�W�− x,y�� �29�

for the quarter plate �0�x�� ,−��y�0�, and

W2 = W�x,y� + L�x�W�− x,y� + L21�y��W�x,− y� + L�x�W�− x,− y��
�30�

for the quarter plate �0�x�� ,0�y���, where the operators
L21�y� and £21�y� are once again defined by Eq. �8�.

This completes the analysis of the problem of two clamped
edge-bonded quarter plates, which leads directly to the following
conclusion. If the deflection W��x ,y� of a clamped semi-infinite
plate under the influence of an arbitrary vertical load is known,
then the corresponding deflections for two clamped edge-bonded
dissimilar quarter plates are explicitly determinable, in terms of
the known deflection W��x ,y� for the clamped semi-infinite plate.

6 Closure
It is first proved that at each point of two perfectly bonded

isotropic semi-infinite dissimilar plates, the deflection can be de-
termined by applying suitably defined integrodifferential operators
on its corresponding value in the isotropic homogeneous plate of
infinite extent, whatever be the physical nature of the influencing
vertical load. By a systematic repeated application of this basic
theorem, we then obtain a new generalized well-structured theo-
rem, which is applicable when an arbitrary vertical load acts in or
near a plate of finite breadth that separates two other dissimilar
isotropic semi-infinite plates. Specifically, if the deflection of an
isotropic homogeneous infinite plate under the influence of an
arbitrary vertical load is known, then their corresponding values
for two dissimilar isotropic semi-infinite plates separated by a
third dissimilar isotropic plate of finite breadth are explicitly de-
terminable by using Maxwell’s method of repeated reflection.

The elastic field due to the presence of an arbitrary singularity
in a compound semi-infinite solid with a free flat surface can be
found by a similar method, the compound solid comprising two
transversely isotropic dissimilar layers perfectly bonded to a third
dissimilar transversely isotropic semi-infinite homogeneous solid,
which should cover many geophysical applications, as discussed
by Eshelby �7� when the influencing singularities are dislocations.
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Energy Dissipation in Normal
Elastoplastic Impact Between Two
Spheres
Elastoplastic deformation occurs widely in engineering impact. Although many empirical
solutions of elastoplastic impact between two spheres have been obtained, the analytical
solution, verified by means of other methods, to the impact model has not been put
forward. This paper proposes a dynamic pattern of elastoplastic impact for two spheres
with low relative velocity, in which three stages are introduced and elastic and plastic
regions are both considered. Finite element analyses with various parameters are carried
out to validate the above model. The numerical results prove to agree with the theoretical
predictions very well. Based on this model, the dissipation nature of elastoplastic impact
are then analyzed, and the conclusion can be drawn that materials with lower yield
strength, higher elastic modulus, and higher mass density have better attenuation and
dissipation effects. The study provides a basis to predict the particle impact damping
containing plastic deformation and to model the impact damped vibration system enroll-
ing microparticles as a damping agent. �DOI: 10.1115/1.3130801�

Keywords: elastoplastic impact, energy dissipation, analytical model, finite element
method

1 Introduction
Conventional particle impact damping �PID� features elastic de-

formation and momentum exchange, which cannot exhaust most
of the vibration energy, but reverberate it among impact partners
or mode shapes �1�. Therefore the research of energy dissipation
due to plastic deformation in particle impacts plays an important
role in improving the performance of PID. Moreover, the simula-
tion of granular flow �2,3� where millions of particles collide with
each other also relies on the understanding of binary collision of
two spheres. Since finite element analysis �FEA� or iteration
methods usually result in a large amount of computation resources
occupation and time consumption for millions of impacts to occur
in the PID system, to obtain an analytical solution of the elasto-
plastic impact between two spheres has become a hot research
topic in the past two decades. In the PID system, the particle size
usually ranges from 200 �m to 20 mm, in which the surface
tension could be ignored, unlike that in nanoscale impacts �4�.

Johnson �5� summarized the theoretical, numerical, and experi-
mental findings of elastoplastic impact research before 1985 and
achieved an expression for the coefficient of restitution, which is
valid in impacts at moderate speeds �up to 500 ms−1� on the
premise of a fully plastic indentation.

Stronge �6� developed Johnson’s theory �5� and divided the
impact process into four stages: elastic impact before onset of
yield, quasistatic elastoplastic indentation, fully plastic indenta-
tion, and elastic unloading from maximum indentation. All rel-
evant formulas have been obtained and the square of coefficient of
restitution is expressed as a ratio of recovery kinetic energy to
strain energy during compression.

Thornton �7� found that the coefficient of restitution obtained
from Stronge’s model �6� is larger than unity at low speeds, and he
deduced a set of formulas and arrived at an expression of coeffi-
cient of restitution only relevant to the ratio of initial velocity to
yield velocity. Furthermore, Wu et al. �8� investigated the normal

impact of an elastic spherical particle with a substrate, which is
assumed to be elastic or elastoplastic, by means of the finite ele-
ment method.

Zhang and Vu-Quoc �9� modeled the dependence of the coeffi-
cient of restitution on the impact velocity in elastoplastic colli-
sions with dynamic FEA, which verified the normal force-
displacement �NFD� model presented by Vu-Quoc and Zhang �10�
and the counterpart of the force-driven model proposed by Vu-
Quoc et al. �11�. The model proposed by Vu-Quoc and Zhang �10�
has been validated by experiments �12�. In addition, the compan-
ion elastoplastic tangential force-displacement �TFD� model is
proposed in Refs. �13,14�.

Mesarovic and Fleck �15� performed an accurate numerical
study of normal indentation of an elastoplastic half-space by a
rigid sphere. Moreover, Mesarovic and Johnson �16� examined the
process of decohesion of two adhering elastoplastic spheres fol-
lowing mutual indentation beyond their elastic limit. Their FEA
results revealed that, for elastic–perfectly plastic materials, the
contact pressure at the end of loading is approximately uniform.

Kogut and Etsion �17� developed a loading model and Etsion et
al. �18� developed an unloading model of elastoplastic spherical
contact. The dissipated energy due to plastic deformation was dis-
cussed and an elastic plastic loading �EPL� index �18� was defined
to indicate the plasticity level of the loaded sphere. The dimen-
sionless expressions, obtained from the results of many cases with
different materials and geometrical parameters, are applicable to
the elastoplastic contact of identical spheres.

More recently, Weir and Tallon �19� found that the coefficient
of restitution depends on geometry and history, and Weir and Mc-
Gavin �4� reported that new regimes will arise at the nanoscale.

With the plastic deformation involved, the impact becomes so
complicated that an accurate theoretical solution is difficult to
obtain. Despite its approximation, the theoretical model has the
advantage of its applicability to the different materials and differ-
ent spherical sizes, and its foundation to find out the effects of all
the primary parameters involved in the impact process. From the
above literature review it can be seen that an analytical solution
obtained from the theoretical model and verified by means of
other methods is still missing. The main goal of this paper is to
develop a theoretical model for normal impact of two spherical,
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isotropic, and perfectly elastoplastic bodies with frictionless sur-
faces. FEA results will be compared to verify the proposed model.
This model is helpful to understand the effect of impact param-
eters such as velocity, yield strength, elastic modulus, mass den-
sity, etc., on the coefficient of restitution, to provide a foundation
to predict the performance of PID containing plastic deformation
and to model the impact damped vibration system enrolling mi-
croparticles as a damping agent �20�.

2 Model of Elastoplastic Impact Between Two Spheres
As shown in Fig. 1, the two colliding spheres �sphere i and

sphere j� have the following parameters: elastic moduli Ei and Ej,
Poisson’s ratios �i and � j, yield strengths �yi and �yj, radii Ri and
Rj, masses mi and mj, mass densities �i and � j, velocities before
impact vi

− and v j
−, velocities after impact vi

+ and v j
+, relative de-

formation �displacement� �, contact force P, radius of contact area
ra, and radius of plastic zone in contact area rp.

2.1 Basis and Assumptions of Model. In this model, we sup-
pose that the two spheres with normal contact are made of the
perfectly elastoplastic and isotropic material, which is not ex-
tremely soft so that the quasistatic simulation can be applied �9�.
Besides, the friction and air resistance are all neglected.

According to the study first made by Johnson �5�, the transition
point from a purely elastic stage to an elastoplastic one was taken
as the onset of yield beneath the contact surface, with the corre-
sponding central contact pressure equal to 1.61�y ��y is the
smaller yield strength of sphere i and sphere j�, which was taken
as the mean pressure in the plastic zone by Thornton �7�. FEA
shows that the mean pressure in the plastic zone is more than 2�y
�9�, but less than 2.8�y as indicated by the theoretical model �6�.

Stronge �6� pointed out that although the plastically deforming
region enlarges as contact pressure increases, it remains confined
below the surface for pressures throughout the range 1.1
� pm /�y �2.8 �pm is the mean pressure of the contact center�,
which is termed contained plastic deformation. In this elastoplas-
tic range, the observable permanent indentation of the surface is
small because plastic deformation is incompressible and the plas-
tically deforming region is encased within an otherwise elastic
body.

In this paper, we propose a new definition of transition point.
Since the plastic region is small and fully contained by the mate-
rial, which remains elastic in the elastoplastic range before the
plastic region expands to the contact surface, the collision at a low
velocity behaves more like an elastic impact, and thus it is rea-
sonable to combine this range to the elastic compression phase. In
this paper, we define the transition point as a point when the
center of the contact area reaches yield and the corresponding
mean pressure of the plastic region is taken as the contact pressure
of rigid punch, which is about 2.57�y, since the radius of the
contact area is far less than that of the contacting spheres.

To simplify the modeling, we further make the following as-
sumptions.

�1� The geometrical relationship in the elastic compression
phase is still valid in the elastoplastic compression phase,
as described in Eq. �3�.

�2� The pressure distribution in the elastic compression phase

is still valid in the elastoplastic compression phase, as de-
scribed in Eq. �6�, with two boundary conditions, that when
r=rp, p�r�= pp and when r=ra, p�r�=0.

�3� The relationship between contact force and relative defor-
mation in the elastic resilience phase is similar to that in the
elastic compression phase.

Assuming these two spheres collide in a normal direction peri-
odically, we consider the interval between their contact and sepa-
ration as a period, which can be divided possibly into the follow-
ing three phases: elastic compression phase �ECP�, elastoplastic
compression phase �EPCP�, and elastic resilience phase �ERP�.

2.2 Modeling at the Stage of ECP. This stage begins when
these two spheres contact and ends when the center of contact
surface comes into yield. Deformation occurring in this phase is
mainly elastic so that Hertz’s elastic contact theory can be applied
in this stage.

According to Hertz’s theory �21�, we have

ra = �3P� 1

Ei
�

+
1

Ej
��

4� 1

Ri
+

1

Rj
� �

1/3

where Ei
�=Ei / �1−�i

2� and Ej
�=Ej / �1−� j

2�.
Let E�=Ei

�Ej
� / �Ei

�+Ej
�� and R�=RiRj / �Ri+Rj�, then ra can be

expressed as

ra = �3PR�

4E� �1/3

�1�

Also from Hertz’s theory, the relative deformation of the two
spheres can be given by

� =

3P� 1

Ei
�

+
1

Ej
��

4ra
=

3P

4E�ra
�2�

From Eqs. �1� and �2�, we obtain

ra
2 = R�� �3�

P = 4
3E�	R��3/2 �4�

Thus, the equation of motion in the elastic compression phase can
be described as �5,6�

m�
d2�

dt2 = −
4

3
E�	R��3/2 �5�

where m� is the equivalent mass of the spheres �7�, and m�

=mimj / �mi+mj�.
Assuming the compressive pressure in the elastic contact area is

spherically distributed, and can be expressed as from Hertz’s
theory,

p�r� = � pc

ra
�	ra

2 − r2

where pc=3P /2�ra
2 is the compressive pressure of the contact

center. And considering Eqs. �3� and �4�, we have

p�r� =
2E�

�R�
	ra

2 − r2 �6�

At the end of the elastic compression phase, the pressure at the
contact center reaches pc= pp=min�ppi , ppj�, because ra�Ri and
ra�Rj, ppi and ppj can be obtained approximately similar to the
impact solution of a rigid flat punch problem �22�, where we have

ppi = �1 +
�

2
��yi

δ

ra

pp

rp

ra

vj

__

vi

RjR
i

Fig. 1 Schematic of elastoplastic impact between two spheres
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ppj = �1 +
�

2
��yj

Thus, rae, the radius of the contact area, and �e, the relative de-
formation, at the end of the ECP can be expressed as

rae =
�ppR�

2E�

�7�

�e = R���pp

2E��2

Solving Eq. �5� and considering the boundary condition �̇=vr
−

when �=0, we obtain the relative velocity in the ECP as follows:

�̇ =	�vr
−�2 −

16E�	R�

15m�
�5/2 �8�

At the end of the ECP, �=�e, thus we get

�̇e =	�vr
−�2 −

16E�	R�

15m�
�e

5/2 �9�

Integrating Eq. �8�, and noticing the initial conditions �=0
when t=0, the relation of � versus t can be deduced as

t =

0

� ��vr
−�2 −

16E�	R�

15m�
�5/2�−1/2

d� �10�

The instant te at which the elastic compression phase ended can be
expressed as

te =

0

�e ��vr
−�2 −

16E�	R�

15m�
�5/2�−1/2

d� �11�

The expressions mentioned above are available in the book by
Johnson �5�.

2.3 Modeling at the Stage of EPCP. This stage begins at the
onset of yield on the contact surface and ends when the relative
velocity of these two spheres decelerates to zero. With the in-
crease in the contact force, the central plastic region gradually
enlarges and the surrounding elastic boundary also gradually ex-
pands. Thus, the contact area can be divided into an inner circular
plastic region and an outer annular elastic region surrounding the
former. The contact force in the plastic region can be expressed as
�rp

2pp. According to Eq. �6�, the total contact force of the annular
elastic region can be expressed as

Pe =

rp

ra 4rE�

R�
	ra

2 − r2dr =
4E��ra

2 − rp
2�3/2

3R�
=

pp
3�3�R��2

6�E��2

In view of Eqs. �3� and �6�, the total contact force over the whole
contact area can be expressed as

P =
pp

3�3�R��2

6�E��2 + �rp
2pp = �R�pp� −

pp
3�3�R��2

12�E��2

Then, the motion equation in the elastoplastic compression phase
can be written as

m�
d2�

dt2 = − ��R�pp� −
pp

3�3�R��2

12�E��2 � �12�

Solving Eq. �12� and considering the initial conditions of �̇

= �̇e when �=�e, the relative velocity in the elastoplastic compres-
sion phase is

�̇ =	�̇e
2 +

�5�R��3pp
5

48m��E��4 +
pp

3�3�R��2

6m��E��2 � −
�R�pp

m�
�2 �13�

When �̇=0, that is, at the end of the elastoplastic compression
phase, the relative deformation �ep between the two spheres can
be written as

�ep = �max =	� pp
2�2�R��
6�E��2 �2

+
m��̇e

2

pp�R�
+

pp
2�2R�

12�E��2 �14�

In order to obtain the relation of relative deformation � versus
time t, Eq. �13� is integrated. In view of initial conditions �=�e
when t= te, we get the relation of � versus t as follows:

t = te +

�e

� ��̇e
2 +

�5�R��3pp
5

48m��E��4 +
pp

3�3�R��2

6m��E��2 � −
�R�pp

m�
�2�−1/2

d�

�15�

The curve of � versus t can be obtained by numerical integra-
tion methods. The instant tep at which the EPCP ended can be
expressed as

tep = te +

�e

�ep ��̇e
2 +

�5�R��3�p
5

48m��E��4 +
pp

3�3�R��2

6m��E��2 � −
�R�pp

m�
�2�−1/2

d�

�16�

2.4 Modeling at the Stage of ERP. This stage begins at an
instant right after these two spheres rebounded and ends when
they separated completely.

According to Eq. �4�, we get the contact force in the ERP

P = 4
3E�	R��� − �res�3/2

where �res is the irreversible plastic relative deformation.
Because the contact force at the end of the EPCP is equivalent

to that at the beginning of the ERP, we have

�R�pp�ep −
pp

3�3�R��2

12�E��2 =
4

3
E�	R���ep − �res�3/2

From this equation we get

�res = �ep − � 3

4E�	R�
��R�pp�ep −

pp
3�3�R��2

12�E��2 ��2/3

�17�

And the motion in the ERP can be expressed as

m�
d2�

dt2 = −
4

3
E�	R��� − �res�3/2 �18�

Solving Eq. �18� and considering the initial conditions of �̇=0
when �=�ep, the relative velocity in the ERP can be expressed as

�̇ = −	16

15
·

E�	R�

m�
��ep − �res�5/2 −

16

15
·

E�	R�

m�
�� − �res�5/2

�19�

It is negative because the direction of relative velocity is opposite
to that of the relative deformation in the ERP.

At the end of the ERP, �=�res, thus the relative velocity vr
+ at

the end of the impact process can be expressed as

vr
+ = v j

+ − vi
+ =	16E�	R�

15m�
��ep − �res�5/2 �20�

In order to obtain the relation of relative deformation � versus
time t, we integrate Eq. �19� considering the initial conditions of
�=�ep when t= tep, and then get the relation between � and t as
follows:
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t = tep −

�ep

� �16

15
·

E�	R�

m�
��ep − �res�5/2

−
16

15
·

E�	R�

m�
�� − �res�5/2�−1/2

d� �21�

The curve of � versus t can be obtained by numerical integra-
tion. When the ERP ended, the instant tres can be expressed as

tres = tep −

�ep

�res �16

15
·

E�	R�

m�
��ep − �res�5/2

−
16

15
·

E�	R�

m�
�� − �res�5/2�−1/2

d�

2.5 Loss Factor in Impact Process. The effective coefficient
of restitution e can be expressed as

e =
v j

+ − vi
+

vi
− − v j

− =
vr

+

vr
− �22�

The energy loss is equivalent to the difference of the total ki-
netic energy before and after impact. According to the momentum
conservation in the impact process we have

mivi
− + mjv j

− = mivi
+ + mjv j

+

Substituting Eq. �22� into the equation above, the velocity of these
two spheres after their collision can be expressed, respectively, as

vi
+ = vi

− −
�1 + e�mj�vi

− − v j
−�

mi + mj
�23�

v j
+ = v j

− +
�1 + e�mi�vi

− − v j
−�

mi + mj
�24�

According to the definition �23�, the loss factor 	 can be written
as

	 =
�1

2
mi�vi

−�2 +
1

2
mj�v j

−�2� − �1

2
mi�vi

+�2 +
1

2
mj�v j

+�2�
2��1

2
mi�vi

−�2 +
1

2
mj�v j

−�2� �25�

For equal masses, the loss factor can be written as

2�	 =
�1 − e2��vi

− − v j
−�2

2��vi
−�2 + �v j

−�2�
so for a fixed coefficient of restitution, the loss factor is maximum
when vi

−=−v j
−. The corresponding maximum value is 2�	max=1

−e2.

3 Dynamic FEA Simulations
In order to verify the model proposed in this paper, we carry out

dynamic FEA. The collision cases of identical spheres �see Sec.
3.1� and different ones �see Sec. 3.2� are both studied.

3.1 Impact Between Identical Spheres. The axisymmetric
models are created with the help of PATRAN software from MSC.
The fine mesh is adopted in the 0.2R �the radius of colliding
sphere� fan-shaped zone near the contact area, and the coarse
mesh is used in other regions to save the possible computation
time. The numbers before and after the symbol “/” represent, re-
spectively, the number and the bias factor of mesh seed on this
side, as shown in Fig. 2. The quadrangular element meshes are
obtained with the paver partition method, as shown in Fig. 3.

The FEA simulations are carried out with the MARC MENTAT 2005

from MSC, and the transient contact model with large deforma-
tion and the Newton–Raphson iteration method with displacement
convergence are adopted. The contact tolerance and time step are

taken as 10−8 m and 10−6 s, respectively. In the simulation cases
studied in this section, we assume that the two colliding spheres
are identical in geometry and material, and their parameters are
chosen as follows: elastic modulus Ei=Ej =210 GPa, Poisson’s
ratio �i=� j =0.25, yield strength �yi=�yj =210 MPa, vi

−

=20 mm /s and v j
− varying among 
20 mm/s, 
15 mm/s, 
10

mm/s, 
5 mm/s, 0 mm/s, 5 mm/s, 10 mm/s, and 15 mm/s, and
Ri=Rj varying among 0.5 mm, 1 mm, 2.5 mm, 5 mm, and 10 mm.

Figure 4 shows the relationship between the relative deforma-
tion of two spheres and the duration time in an impact period. It
can be seen that the results produced by the FEA simulations
agree reasonably well with those obtained from the theoretical
model expressed by Eqs. �10�, �15�, and �21�. The deformation in
an impact period cannot return to zero, which indicates that the
deformation features elastoplasticity.

The velocities of two spheres and the loss factor after their
collision are the results we are focused on. Figures 5 and 6 dem-
onstrate the velocities of sphere i and sphere j after their impact,
respectively; Fig. 7 indicates the loss factor in the process. It can
be seen that the calculated results from Eq. �23� �Fig. 5�, Eq. �24�
�Fig. 6�, and Eq. �25� �Fig. 7� show good agreement with those
from FEA simulation. And the loss factor increases considerably
when v j

−�0 �Fig. 7�; that is, the energy loss will be enhanced if
the spheres move in the opposite direction, which is consistent
with the analytical result obtained at the end of Sec. 2.

10

30

30/-8

50/-6

50/-620/+85/-3

8/+3

Fig. 2 Schematic of mesh seed parameters

Fig. 3 Schematic of element partition result

Fig. 4 Curve of relative deformation and impact time in impact
process; vi

−=20 mm/s, vj
−=−5 mm/s, and Ri=Rj=2.5 mm
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3.2 Impact Between Different Spheres. In this section, the
FEA simulations in the impact cases with different materials or
different radii are carried out to calibrate the model proposed in
this paper. The method of mesh partition is similar to that used in
Sec. 3.1 except that the fan-shaped zone with the fine mesh is
defined with the radius of the smaller colliding sphere.

In collision cases with different materials, the parameters are
chosen as follows: elastic moduli Ei=210 GPa and Ej
=100 GPa, Poisson’s ratios �i=0.25 and � j =0.33, yield strengths
�yi=210 MPa and �yj =100 MPa, vi

−=20 mm /s and v j
− varying

among 
20 mm/s, 
15 mm/s, 
10 mm/s, 
5 mm/s, 0 mm/s, 5
mm/s, 10 mm/s, and 15 mm/s, and Ri=Rj varying among 0.5 mm,
1 mm, 2.5 mm, 5 mm, and 10 mm. Figure 8 indicates the effective
coefficient of restitution in the impact process. Figures 9 and 10
demonstrate the velocities of sphere i and sphere j after their
impact, respectively; Fig. 11 indicates the loss factor in the impact
process.

In collision cases with different radii, the parameters are chosen
as follows: elastic modulus Ei=Ej =210 GPa, Poisson’s ratio �i

=� j =0.25, yield strength �yi=�yj =210 MPa, vi
−=20 mm /s and

v j
− varying among 
20 mm/s, 
15 mm/s, 
10 mm/s, 
5 mm/s,

0 mm/s, 5 mm/s, 10 mm/s, and 15 mm/s, and Ri=10 mm and Rj
varying among 2.5 mm, 5 mm, and 10 mm. Figures 12 and 13
demonstrate the velocities of sphere i and sphere j after their
impact, respectively; Fig. 14 indicates the loss factor in the
process.

As shown in these figures, the theoretical predictions agree
closely with the FEA simulation results from all cases listed
above, which further validates the reliability of the proposed
model.

4 Energy Dissipation Analysis Based on the Proposed
Model

In this section, several primary parameters in the collisions are
discussed to show their effect on loss factor on the basis of the

Fig. 5 Velocity of sphere i after impact between identical
spheres

Fig. 6 Velocity of sphere j after impact between identical
spheres

Fig. 7 Loss factor in impact between identical spheres

Fig. 8 Effective coefficient of restitution in impact between dif-
ferent material spheres
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proposed model. The parameters used in the calculating cases are
chosen as the same as those in Sec. 3.1 except for the listed
parameters.

4.1 Effect of Impact Velocity on Loss Factor. According to
Eq. �25�, we obtain the relation between the loss factor and the
velocity ratio of two spheres, as shown in Fig. 15. The loss factor
obviously increases when v j

− /vi
−�0, especially when v j

− /vi
−=−1,

which means when the two spheres have the velocity of the same
magnitude but the opposite direction before their impact, the loss
factor reaches to its maximum, which is in accordance with the
analytical result obtained at the end of Sec. 2. In the range of
v j

− /vi
−�0, the loss factor decreases with the velocity ratio increas-

ing, and the larger the velocity ratio, the lower the loss factor.

4.2 Effect of Yield Strength and Elastic Modulus of Mate-
rials on Loss Factor. The most important material parameters
on loss factor are the yield strength and the elastic modulus.

According to Eq. �25�, Fig. 16 represents the dependence of the
loss factor on the yield strength and the elastic modulus.

As shown in Fig. 16, the loss factor increases with the yield
strength decreasing. This reflects the fact that the yield strength
enables the material to resist plastic deformation. The lower the
yield strength, the easier the plastic deformation of the material,
and the higher the loss factor. On the other hand, the elastic modu-
lus is the measurement of the material’s deforming ability. The
higher the elastic modulus, the smaller the elastic deformation to
occur before yielding, and the weaker the ability of the material to
rebound, which implies more energy loss. This is also verified by
the upper curves in Fig. 16.

4.3 Effect of Mass Density on Loss Factor. Figure 17 shows
the effect of mass density on the loss factor. Larger density means
larger mass and larger impact intensity. Thus the larger the mass
density, the higher the loss factor, which is consistent with the
experimental results from Panossian �24�.

Fig. 9 Velocity of sphere i after impact between different ma-
terial spheres

Fig. 10 Velocity of sphere j after impact between different ma-
terial spheres

Fig. 11 Loss factor in impact between different material
spheres

Fig. 12 Velocity of sphere i after impact between different ra-
dius spheres
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5 Conclusions
In this paper, we first propose a theoretical model of elastoplas-

tic impact for two spheres with low relative velocity, and verify it
with FEA simulations, numerical results of which show good
agreement with the predictions of analytical solutions for identical
and different spheres. Based on this model, this paper also ana-
lyzes the deformation and dissipation nature of the elastoplastic
impact system, and concludes that the materials with lower yield
strength and higher elastic modulus dissipate more energy in the
impact process, which provides a principle to select the material
of impact partners in particle impact damper. Furthermore, the
materials with larger mass density are shown to be favorable to
increase energy dissipation in vibroimpact, which coincides with
the observations from Panossian �24�. In a word, the study pro-
vides a foundation to predict the performance of particle impact

Fig. 14 Loss factor in impact between different radius spheres

Fig. 15 Loss factor with different impact velocity groups: Ri
=Rj=2.5 mm, Ei=Ej=210 GPa, �i=�j=0.25, and �yi=�yj
=210 MPa

Fig. 13 Velocity of sphere j after impact between different ra-
dius spheres Fig. 16 Loss factor with different material parameters: �yi

=�yj=50–400 MPa at interval of 50 MPa, Ri=Rj=2.5 mm, vi
−=

−vj
−=20 mm/s, and �i=�j=0.25

Fig. 17 Loss factor with different mass densities: vi
−

=20 mm/s, Ri=Rj=2.5 mm, Ei=Ej=210 GPa, �i=�j=0.25, and
�yi=�yj=210 MPa
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damping containing plastic deformation and to model the impact
damped system enrolling the microparticles as a damping agent.
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Nomenclature
e � effective coefficient of restitution

Ei and Ej � elastic moduli of sphere i and sphere j
E� � equivalent elastic modulus of two spheres

Ei
� and Ej

� � equivalent elastic moduli of sphere i and
sphere j

m� � equivalent mass of two spheres
mi

� and mj
� � masses of sphere i and sphere j

pc � compressive pressure of contact center
pm � mean pressure of contact center
pp � compressive pressure on the plastic contact

area of two spheres
ppi and ppj � limit compressive pressures of sphere i and

sphere j
p�r� � contact pressure distribution in the elastic con-

tact area of two spheres
P � contact force

Pe � contact force over the annular elastic area in
the elastoplastic compression phase

ra � radius of contact area
rae � transition contact radius from ECP to EPCP
rp � radius of plastic zone in the contact area
R� � equivalent radius of two spheres

Ri and Rj � radii of sphere i and sphere j
t � impact time from touching to separation of two

spheres
te, tep, and

tres � respective instants at which elastic compres-
sion phase, elastoplastic compression phase,
and elastic resilience phase ended since the
beginning of contact of two spheres

vi
− and v j

− � velocities of sphere i and sphere j before
impact

vi
+ and v j

+ � velocities of sphere i and sphere j after impact
vr

− � relative velocity of two spheres before impact
vr

+ � relative velocity of two spheres after impact
� � relative deformation of two spheres in impact

�̇ � relative velocity of two spheres in impact
�e and �ep � respective relative deformations of two spheres

at the end of elastic compression phase and
elastoplastic compression phase

�̇e � relative velocity of two spheres at the end of
elastic compression phase

�max � maximum of relative deformation of two
spheres

�res � plastic relative deformation of two spheres
	 � energy loss factor

�i and � j � Poisson’s ratios of sphere i and sphere j
�i and � j � mass densities of sphere i and sphere j

�y � minimum yield strength of sphere i and sphere
j

�yi and �yj � yield strengths of sphere i and sphere j
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The Dynamic Compressive
Response of an Open-Cell Foam
Impregnated With a
Non-Newtonian Fluid
The response of a reticulated, elastomeric foam filled with colloidal silica under dynamic
compression is studied. Under compression beyond local strain rates on the order of
1 s�1, the non-Newtonian, colloidal silica-based fluid undergoes dramatic shear thick-
ening and then proceeds to shear thinning. In this regime, the viscosity of the fluid is
large enough that the contribution of the foam and the fluid-structure interaction to the
stress response of the fluid-filled foam can be neglected. An analytically tractable lubri-
cation model for the stress-strain response of a non-Newtonian fluid-filled, reticulated,
elastomeric foam under dynamic compression between two parallel plates at varying
instantaneous strain rates is developed. The resulting lubrication model is applicable
when the dimension of the foam in the direction of fluid flow (radial) is much greater than
that in the direction of loading (axial). The model is found to describe experimental data
well for a range of radius to height ratios ��1–4� and instantaneous strain rates of the
foam (1 s�1 to 4�102 s�1). The applicability of this model is discussed and the range
of instantaneous strain rates of the foam over which it is valid is presented. Furthermore,
the utility of this model is discussed with respect to the design and development of energy
absorption and blast wave protection equipment. �DOI: 10.1115/1.3130825�

Keywords: foam, lubrication approximation, non-Newtonian, porous media, shear-
thickening fluid

1 Introduction
While existing armor is highly advanced and capable of resist-

ing most projectiles �1�, advancements toward the development of
an armor that efficiently protects against the enormous pressure
gradients generated by explosive devices are limited. Blast waves
can cause severe damage to the human body as well as to vehicles
and structures. Recently, the design of a novel reactive armor to
mitigate the effects of blast waves has been explored �2�. This
design incorporates open-cell �reticulated� foams filled with shear-
thickening, non-Newtonian liquids into existing composite armor.
Open-cell foams filled with non-Newtonian liquids have the po-
tential to impede shockwaves, increasing the time it takes for
waves to propagate through the foam medium and decreasing the
resulting pressure gradient experienced by underlying media �e.g.,
tissue�. As a first step in modeling this nonlinear phenomenon, we
analyze the flow of a non-Newtonian fluid �NNF�, which has a
shear-thickening regime, through an open-cell, elastomeric foam.
The flow of both Newtonian and non-Newtonian fluids through
open-cell foams has been investigated extensively for a variety of
engineering applications, but characterizing the contribution of the
fluid to energy absorption under dynamic loading is still a critical
area of research. Most of the previous research has focused on the
development of complex, often computational, models to describe
the contribution of Newtonian fluids in an open-cell foam under
impact loading �3–6�. More recent work by Dawson et al. �7� has
resulted in the development of tractable models for the contribu-
tion of viscous Newtonian flow to the stress-strain response of a
low-density, reticulated, fluid-filled foam under dynamic loading.

However, comparably little work has been done in the field of
non-Newtonian flow through deformable porous media. While a
number of authors have studied the pressure drop of general
power-law, non-Newtonian fluids through porous media �8–10�, a
comparable model for the response of a non-Newtonian fluid-
filled foam under dynamic compression has not been published.

In this paper, we analyze the response of a NNF-filled, low-
density, reticulated, elastomeric foam under dynamic axial com-
pression. The response after the fluid has undergone shear thick-
ening is particularly important since the fluid will nearly always
be in this regime for most engineering designs under dynamic
loading. Scaling arguments demonstrate that after the shear-
thickening transition, the contribution of the foam itself and the
contribution of the fluid-structure interaction to the overall re-
sponse can be neglected. Based on these arguments, a lubrication
model for squeezing flow of a non-Newtonian fluid between two
parallel plates is developed in which the characteristic dimension
of the fluid in the direction of fluid flow �radial� is assumed to be
much greater than that in the direction of loading �axial�. The
corresponding range of instantaneous strain rates of the NNF-
filled foam over which this model is applicable is also given. It is
anticipated that this model is applicable for nearly all expected
instantaneous strain rates caused by either impact loading or blast
wave loading. The range of characteristic dimensions of the NNF-
filled foam over which this model is valid is also given based on
previous research on the applicability of a lubrication model to the
stress-strain response of a Newtonian fluid-filled foam under dy-
namic compression �7�. The lubrication model is analytically trac-
table, depending only on the characteristic fluid properties, the
characteristic radius to height ratio of the NNF-filled foam, and
the instantaneous strain rate of the foam. Furthermore, it is inde-
pendent of all of the parameters of the low-density, elastomeric
foam, such as foam grade.

Experimental measurements of the stress-strain response of a
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low-density polyurethane foam filled with a colloidal silica non-
Newtonian fluid under dynamic loading are presented. The non-
Newtonian fluid is comprised of a high volume fraction of nearly
monodisperse silica particles suspended in ethylene glycol. Shear
thickening is often observed in concentrated colloidal dispersions
and is characterized by a dramatic increase in viscosity with in-
creasing shear stress in the fluid �11,12�. Numerous studies have
concluded that reversible shear thickening in colloidal suspen-
sions is due to the formation and jamming of clusters of particles
�hydroclusters� bound together by hydrodynamic lubrication
forces between particles �13–16�. Detailed reviews and quantita-
tive descriptions of the mechanisms for shear thickening of col-
loidal suspensions are given in Refs. �17–19�. In this paper, the
complex behavior of colloidal silica non-Newtonian fluid is dis-
cussed and related to the response of the NNF-filled foam. In the
range where the model is valid, it is found to be strongly sup-
ported by experimental results. Finally, a brief discussion of the
engineering applications of non-Newtonian fluid-filled foams and
the significance of the model presented in this paper are presented.

2 Analysis

2.1 Model Assumptions. This analysis considers dynamic
axial compression of a low-density, elastomeric foam fully satu-
rated with a non-Newtonian power-law fluid between two parallel
plates. The fluid is assumed to remain in a cylindrical shape with
uniform radius while undergoing deformation, where the radius of
the cylinder can be determined by conservation of mass of an
incompressible fluid �Fig. 1�. In addition, the fluid is assumed to
be a power-law fluid with a highly shear-thickening regime, such
that the maximum viscosity is several orders of magnitude greater
than the minimum viscosity. For known nanoparticle based non-
Newtonian fluids, this will result in a maximum viscosity greater
than 103 Pa s. In this viscosity range, the stress within the fluid is
three orders of magnitude greater than that in the foam alone.
Furthermore, the characteristic dimension of the colloidal particles
in the fluid is several orders of magnitude smaller than the char-
acteristic dimension of the foam pore size. These two observations
ensure that the response of the elastomeric foam, as well as the
fluid-structure interaction between the foam and the non-
Newtonian fluid, can be neglected, so that the system behaves as
if the foam were nonexistent. This assumption is supported in Fig.
2 where magnified images of the cells of the foam are shown
before loading and during loading. In Fig. 2 it is evident that the
foam struts are readily torn apart by the highly viscous fluid flow,
supporting the hypothesis that the structural support from the
foam and the fluid-structure interaction is negligible. This result is
in contrast to the result presented by Dawson et al. �7� for a lower
viscosity, Newtonian fluid-filled foam where the structural re-
sponse of the foam and the fluid-structure interaction are signifi-
cant. The analysis presented in this paper is also based on a lubri-

cation approximation, which assumes that the ratio of the
characteristic radius of the specimen to the characteristic height of
the specimen, in this paper referred to as the aspect ratio, is much
greater than 1. Dawson et al. �7� gave a detailed analytical de-
scription of the applicability of the lubrication approximation to a
comparable problem with a Newtonian fluid and demonstrated the
rapid convergence of the lubrication model to the exact solution as
the aspect ratio increases. They concluded that beyond aspect ra-
tios of 4, the lubrication model can be used to approximate the
exact solution; however, even beyond aspect ratios of unity, the
lubrication solution is shown to approximate the exact solution to
within 10% for most strains. Finally, after the shear-thickening
transition, the flow is assumed to be dominated by viscous forces
for all instantaneous strain rates of the foam considered in this
analysis.

2.2 Fluid Flow in a Rectangular Channel. We first consider
a model for pressure driven flow of a power-law fluid through a
rectangular channel �Fig. 3� where the length of the channel is L,
the width is W, and the height is 2B with 2B�W�L. The flow is
assumed to be incompressible and locally fully developed. The
gravitational effects are assumed to be negligible. Since the flow
is assumed to be dominated by viscous forces, inertial effects can
also be neglected. The following velocity and pressure profiles are
assumed:

Vz = Vz�x,y�

Vx = Vy = 0

P = P�z� �1�

where Vx, Vy, and Vz are the velocity components in the horizontal
�x�, vertical �y�, and axial �z� directions, respectively, and P is the
local pressure within the fluid. Coupling the equation of continuity
with the full Navier–Stokes equations of motion, this problem is
readily solved for a power-law fluid where the viscosity � is given
by the relation

� = m��̇�n−1 �2�

where m is the consistency index, n is the power-law exponent,
and �̇ is the magnitude of the rate of strain tensor or the shear rate
of the fluid. Following Bird et al. �20�, the necessary boundary
conditions are based on symmetry and no wall-slip at the wall and
can be given by

�yz�y=B = 0

Vz�y=0 = 0 �3�

where �yz is the shear stress in the fluid. Applying these assump-
tions and boundary conditions, the Navier–Stokes equations of

Fig. 1 Images of a 70 pores/in. foam filled with 61% volume
fraction silica-based non-Newtonian fluid loaded in axial com-
pression at 250 mm/s. „a… ε=0 strain, „b… ε=0.1 strain, „c… ε
=0.2 strain, and „d… ε=0.3 strain.

Fig. 2 Optical micrograph of a NNF-filled foam. „a… ε=0 strain
and „b… ε=0.4 strain.

Fig. 3 Model of rectangular channel flow
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motion in the axial direction can be solved using a lubrication
approximation. The resulting flow rate Q, given by Bird et al.
�20�, is found to be

Q = 2WB2�−
B

m

�P

�z
�1/n 1

�1

n
+ 2� �4�

2.3 Radial Fluid Flow in a Cylindrical Specimen Squeezed
Between Parallel Plates. In the lubrication limit, flow in a rect-
angular channel can be transformed to radial squeezing flow be-
tween two parallel plates where the lower plate is fixed and the
upper plate is moving as shown in Fig. 4. As previously discussed,
the fluid is assumed to remain in a cylindrical shape with uniform
radius while undergoing deformation. By conservation of mass the
aspect ratio at any given axial strain � is given by

R

H
=

Ro

Ho
	 1

1 − �

3/2

�5�

where Ro is the initial radius of the NNF-filled foam at zero strain,
Ho is the initial height at zero strain, R is the radius at any given
strain, H is the distance between the plates, and � is the strain,
taken to be positive in compression and given by �1−H /Ho� �Fig.
4�. In Fig. 4 Pa is the atmospheric pressure on the free surface,

and the magnitude of the velocity of the top plate is given by �Ḣ�,
where Ḣ is the time rate of change in the distance between the two
plates. Using the transformations from the two-dimensional, rect-
angular channel, planar flow problem in Sec. 2.2 to the squeezing
flow problem between parallel plates in cylindrical coordinates
given by Bird et al. �20�, Eq. �4� can be rewritten for the lubrica-
tion squeezing flow between parallel plates as

Q�r� = �rH2�− H

2m

�P

�r
�1/n 1

�1

n
+ 2� �6�

Furthermore, the equation of continuity can be used to find a
relation between the volumetric flow rate and the change in height
of the fluid giving

Q�r� = �r2�− Ḣ� �7�
Combining Eqs. �6� and �7� and solving for the pressure profile
give

P�r� − Pa =
2m�− Ḣ�n

H2n+1 �2n + 1

n
�n Rn+1

n + 1
	1 − � r

R
�n+1
 �8�

For a power-law fluid 	zz is zero on the surface of the plate by
arguments of the equations of motion in the normal direction and
mass conservation under a no slip condition. Furthermore, Bird et

al. �20� gave the solution for squeezing flow of viscoelastic fluids
between parallel disks, accounting for normal stresses using the
Criminale-Ericksen-Filbey �CEF� equations. It is evident that the
pressure distribution given in Eq. �8� is equivalent to this solution,
indicating normal stress effects 	zz on the surface of the plate are
negligible. Neglecting inertial effects, a force balance can be used
to find an equivalent uniform stress distribution or true stress 	avg,
applied to the top compression plate by integrating the pressure
field over the radius and dividing by the area of the plate giving

	avg = 2�2n + 1

n
�n m

n + 3
� Ro

Ho
�n+1�− Ḣ

H
�n� 1

1 − �
�3�n+1�/2

�9�

where −Ḣ /H is the instantaneous strain rate of the NNF-filled
foam or the negative of the current rate of change in the height of
the foam divided by the current height of the foam. It is important
to distinguish the instantaneous strain rate of the foam from the
magnitude of the strain rate of the fluid �̇, which in this paper is
referred to as the local strain rate. In our experiments described
below, the fluid flows through an open-cell foam, which intro-
duces a tortuosity to the fluid path. We account for the tortuosity
by introducing a constant into Eq. �9�.

3 Experimental Methods

3.1 Materials. Specimens of open-cell, flexible, polyester-
based polyurethane foams �New Dimension Industries, Moon-
achie, NJ�, with nominal cell diameters of 175 
m, 210 
m, and
235 
m �corresponding to manufacturer specified grades of 90
pores/in., 80 pores/in., and 70 pores/in., respectively� were used in
the experiments. The densities of the foams ranged from
0.0318 g /cm3 to 0.0322 g /cm3. Based on the manufacturer’s
value of the density of the solid polyurethane ��s=1.078 g /cm3�,
the relative density of the foams was ��

o /�s�0.030. The foam
was cut into cylindrical specimens with nominal diameter D
=25.4 mm and height Ho=12.6 mm. The dimensions of each
sample were measured using a digital caliper accurate to within
0.01 mm.

The non-Newtonian fluid consisted of silica nanoparticles �Fuso
Chemical Co., Osaka, Japan� suspended in ethylene glycol �VWR,
West Chester, PA� at a volume fraction of approximately 61%.
The average particle diameter was determined using a scanning
electron microscope �XL30 FEG ESEM, FEI/Philips, Hillsboro,
OR� as shown in Fig. 5�a�. The diameters of 100 particles were
measured and analyzed using SCION IMAGE analysis software
�Scion Corporation, Frederick, MD�. The particles are found to be
nearly monodisperse �Fig. 5�b�� with an average diameter of
293 nm+−31 nm. The density of the silica nanoparticles them-
selves was taken to be that given by the supplier of 1.95 g /cm3.
The density and viscosity of the ethylene glycol suspending fluid
were taken to be �=1.11 g /cm3 and 
=2.1�10−2 Pa s at 20°C.

The colloidal silica suspension was first washed with ethylene
glycol three times. The washing process began by centrifuging the
solution at 2700 g for 4 h using a Sorvall Legend Mach 1.6 Cen-
trifuge �Fisher Scientific, Suwanee, GA�. After this centrifuging
process, the silica suspension consisted of a sedimented layer and
a layer of supernatant, which was subsequently poured off. Ethyl-

Fig. 4 Lubrication fluid flow model assuming the absence of
foam. „a… At 0 strain and „b… at any given strain ε.

Fig. 5 Scanning electron microscope images of silica
particles
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ene glycol was then added to the remaining sedimented layer and
the mixture was resuspended using a VWR digital vortex mixer
�VWR, West Chester, PA�. In order to determine the volume frac-
tion of the sedimented silica particles after centrifuging and re-
moval of the supernatant, the sediment was dried until no signifi-
cant change in mass over a 24 h period was detected. Based on
this drying experiment, the volume fraction of the sediment was
determined to be 69% silica particles by volume. The volume
fraction of the sediment after centrifuging and removal of the
supernatant was found to be constant to within measures of un-
certainty. In the experiments utilized for this paper the sediment
was immediately redispersed in ethylene glycol after centrifuging
to give a final suspension volume fraction of approximately 61%
silica. To redisperse the sediment and create this 61% by volume
silica-based NNF, a vortex mixer was used until the sediment
appeared to be completely suspended in the fluid. Then the NNF
was sonicated for 1 h using an ultrasonic bath. Based on the
assumption of ideal mixing, the density of the resulting NNF was
estimated to be 1.6 g /cm3.

3.2 Viscosity of the Silica Suspension. The steady state rheo-
logical properties of the colloidal silica suspension or non-
Newtonian fluid under shear flow were then measured using a
controlled stress rheometer �ARG 2000, TA Instruments, New
Castle, DE�. The geometry was selected to be a 40 mm aluminum
parallel plate geometry with 500 
m gap. Although a cone and
plate geometry is preferred for steady state shear properties, the
parallel plate geometry is more suitable for use with sandpaper,
which is required to reduce slip of a high viscosity fluid. A de-
tailed discussion on the effects of wall slip in rheological mea-
surements can be found in Ref. �21�. In summary, the presence of
slip in viscosity measurements is detected by substantial shifts in
the viscosity plots with varying gap thickness between the parallel
plates �in some cases shifts in the viscosity can be in excess of an
order of magnitude�. To eliminate slip in the rheological measure-
ments, the parallel plate geometry was covered with a 1000 grit
sandpaper, for which the characteristic size of the grit or rough-
ness is of the same order of magnitude as the diameter of the silica
particles. The rheological measurements were found to be very
similar with gap ranges varying from 250 
m to 1000 
m, indi-
cating that this sandpaper nearly eliminated the effect of wall slip.
Figure 6 gives a plot of the viscosity against the shear stress in the
silica-based NNF with a volume fraction of approximately 48%
measured at gaps of 250 
m and 500 
m. Figure 6 clearly dem-
onstrates in these experiments that there was a negligible change
in the viscosity with varying gap thickness, indicating slip was
successfully eliminated. All experiments were performed at
22.5°C and controlled with a Peltier temperature control. After
loading the sample into the viscometer, the sample was loaded
under a preshear stress ramp from 10 Pa to 100 Pa and then

allowed to rest for 15 min to eliminate any effects of sample
loading. A stress sweep was performed from 10 Pa to a maximum
shear stress in the fluid of approximately 15,400 Pa with 10
points/decade, each of which was measured for 60 s. However, for
samples with a lower volume fraction of particles than the stan-
dard 61% sample, the maximum shear stress value in the fluid
could not be achieved due to rate limitations of the rheometer, so
the maximum shear stress achievable was recorded. Ascending
and descending stress sweeps were performed, and minimal hys-
teresis was observed, demonstrating the reversibility of the fluid
as found by Bender and Wagner �17�. In addition, no yield stress
behavior was observed at low stresses. The steady state shear
viscosity was measured along with the shear stress in the fluid and
local shear rate under controlled stress loading. Because of the
complexity of the manufacturing process, determining the exact
volume fraction of silica particles is difficult, so small variations
in the volume fraction are expected. To assess the sensitivity to
variations in the volume fraction of silica and to determine the
overall characteristic behavior of high volume fraction silica-
based fluids, this procedure was used for a range of volume frac-
tions from 48% to 61%.

3.3 Dynamic Compression Tests on Non-Newtonian Fluid-
Filled Foam. Samples of a reticulated, polyurethane foam satu-
rated with the 61% volume fraction silica-based NNF were then
prepared. Since even the minimum viscosity of the NNF is large,
samples of a reticulated foam were filled by the capillary effect
through compression cycles while submerged in a bath of NNF
shaken by a vortex mixer. Hager and Craig �22� demonstrated that
the deflection of a polyurethane foam compressed to 0.75 strain
for a short duration of time is almost completely recoverable.
Therefore, an attempt was made not to exceed a strain of 0.75
during the filling process to minimize the microstructural damage
caused by the filling process. This filling procedure was carried
out until the weight of the fluid-filled foam samples achieved the
desired saturated weight expected, based on the density, porosity,
and dimensions of the foam as well as the density of the fluid.
After saturation, the NNF-filled foam was allowed to recover for 2
h prior to testing, based on data for the recovery of a low-density
polyurethane foam presented by Hager and Craig �22�.

The compressive true stress-strain response of the NNF-filled
foam was measured with the rise direction of the foam parallel to
the direction of loading, up to a strain of 0.6 strain and over a

range of instantaneous strain rates of the foam from −Ḣ /H
=1.0 s−1 to 4�102 s−1. For instantaneous strain rates less than

−Ḣ /H=50 s−1 an Instron testing machine �Instron Model 1321,

Instron Corp., Canton, MA� was used at constant velocities �−Ḣ
=12.5 mm /s, 31.25 mm/s, 62.5 mm/s, 93.75 mm/s, 125 mm/s,

and 250 mm/s�; for instantaneous strain rates greater than −Ḣ /H
=50 s−1 a Dynatup drop-tower �Dynatup 9200 Series, Instron
Crop., Canton, MA� was used. The drop-tower impact experi-
ments were arranged to be nearly constant velocity. Data were
only collected up to strains of approximately 50%, at which point
built in stoppers in the drop tower absorbed the remaining energy.
The drop-tower weight was approximately 21.7 kg, resulting in an
impact energy that was substantially greater than the energy ab-
sorbed by the NNF-filled foam or the energy gained due to poten-
tial energy effects. Since the energy of the drop-tower weight was
nearly constant, the resulting experiments were nearly constant

velocity �−Ḣ�0.75 m /s, 1.00 m/s, 1.25 m/s, 1.50 m/s, 1.75 m/s,
2.00 m/s, 2.25 m/s, 2.50 m/s, 2.75 m/s, and 3.00 m/s�. During
testing the temperature was maintained at 22.5°C to ensure the
fluid properties are consistent. Since the flow is assumed to be
instantaneously fully developed, the model presented in this paper
is applicable to constant velocity loading.

Fig. 6 Steady shear viscosity plotted against shear stress for
48% volume fraction of silica-based non-Newtonian fluid. Gap
thickness: 500 �m „�… and 250 �m „�….
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4 Fluid Viscosity Results and Discussion
In Fig. 7 a typical plot of the viscosity against the shear stress in

the fluid for a NNF fluid with volume fraction of 50% silica par-
ticles is given. The rheological behavior of the fluid under steady
state shear viscosity testing in the controlled stress rheometer was
consistent for all volume fractions tested, so Fig. 7 is taken to be
typical of the behavior for all silica-based, non-Newtonian fluids
with the shear-thinning and -thickening regimes discussed in this
paper. The viscosity data also correspond well with similar experi-
ments performed by Maranzano and Wagner �18�.

Figure 7 also denotes the typical regimes of distinct behavior
observed for this class of fluids. At extremely low local strain
rates the fluid acts as a shear-thinning fluid �regime R1�. The shear
thinning or “yield stress” behavior observed at low shear stresses
�or local strain rates� occurs when the particles in an ordered
phase begin to orient themselves so that the direction of closest
packing of the spheres aligns with the flow velocity, such that the
planes containing the closest packing spheres are parallel to the
shearing surfaces �23�. Therefore, the three-dimensional ordered
phase transforms into a two-dimensional layered phase that per-
mits flow, resulting in a dramatic drop in viscosity. At a critical
shear stress �or local strain rate� dramatic shear thickening occurs,
evident in regime R2. The onset of this dramatic shear thickening
occurs when the hydrodynamic forces driving particles together
exceed the repulsive forces due to interparticle �i.e., electrostatic
or steric� potentials and Brownian motion �18�, and the particles
fail to remain in their ordered state and begin to form three-
dimensional clusters of particles. This dramatic shear thickening is
evident in Fig. 7 at nearly constant local strain rate. This dramatic
shear thickening is often termed “critical shear thickening” as
when a discontinuity is observed as shown in Fig. 7. As previ-
ously discussed the jamming phenomenon is attributed to shear
thickening, but critical shear thickening is only observed for very
high volume fractions of solid particles. Following shear thicken-
ing, a plateau viscosity is reached �regime R3�. A number of theo-
ries have been proposed for this phenomenon, but it is generally
accepted that the clusters begin to break down and form a random
three-dimensional packing �12�. These first three regimes are char-
acteristic of most non-Newtonian fluids with shear-thickening re-
gimes �12�. However, after the maximum plateau, the fluid is of-
ten found to enter one of three stages: fracture, an extended
plateau viscosity independent of shear rate, or a shear-thinning
regime �12�. This regime of behavior is controlled by particle size
distribution, particle content, the volume fraction of particles,
particle-particle interactions, and the viscosity of the continuous
phase. For the particular fluid discussed in this paper, another
shear-thinning regime, R4, occurs and, finally, for lower volume
fraction fluids, a lower plateau viscosity is observed �regime R5�,
which is approximately equal to the minimum viscosity previ-

ously obtained �Fig. 7�. A large body of literature attempts to
explain the behavior in all the regimes described �24,17,25,13� but
the explanations for some phenomenon are still under dispute, so
a detailed description is excluded from this paper. However, the
general regimes described here are found to be consistent with this
body of literature as seen in Refs. �26,12�. The primary remaining
debate is around the shear-thinning regime R4 and whether or not
slip is causing it. In addition to the evidence presented by Hadjis-
tamov �26� and Barnes �12�, Hoffman �11� also demonstrated dis-
tinct shear-thinning regimes after shear thickening for monodis-
perse polymeric resin colloids. We believe that much of the recent
literature has avoided the debate around this topic by not publish-
ing data in the high stress regime examined in this study. For
instance, the maximum shear stresses examined for comparable
silica-based non-Newtonian shear-thickening fluids given by
Bender and Wagner �17�, Fagan and Zukoski �27�, Lee et al. �23�,
and Maranzano et al. �18� range from the order of 100 Pa to the
order of 1000 Pa. None of these studies attempts to examine the
stress regime approaching and exceeding 1�104 Pa, presented in
this study. However, more recent studies by Egres and Wagner
�28� demonstrated that measurements in this regime are possible.
They also showed with a different type of shear-thickening fluid
�precipitated calcium carbonate based shear-thickening-fluid
�STF�� distinct plateau regimes, corresponding to R3, followed by,
in some cases, what appears to be the beginning of shear-thinning
regimes, corresponding to R4. In addition to this support, the re-
sults of the stress-strain response of the NNF-filled foam pre-
sented at the end of this paper provide further evidence that the
apparent shear-thinning phenomenon in regime R4 is not caused
by slip.

Figure 8 plots the viscosity against the shear stress in the fluid
for 61% volume fraction silica/ethylene glycol solution. Limita-
tions in the maximum torque capacity of the viscometer did not
allow us to obtain data for the full range of regimes R4 and R5.
Assuming that the trends in the viscosity of the fluid with 61%
volume fraction silica particles are similar to those at lower vol-
ume fraction of particles, we can extrapolate the existing R4 data
using a linear regression of the log data �equations shown in the
figures�. We note that, for lower particle volume fraction based
fluids, such as in Fig. 7, the value of the viscosity for the lower
plateau �R5� is similar to that at the minimum of R1; we expect the
transition from R4 to R5 to be similar for the fluid with 61%
volume fraction of particles. In Fig. 8 an equation for the trend
line of the viscosity as a function of the shear stress is given,
which can be transformed into an equation for the viscosity as a
function of the local shear rate. Using the plateau data and the
shear-thinning trend line Fig. 8, the parameters m and n for the
power-law model of the 61% volume fraction NNF in regimes R3
and R4 can be determined to be m=7700 Pa s, n=1.0 and m
=10,800 Pa s, n=0.19, respectively.

Fig. 7 Steady shear viscosity plotted against shear stress for
50% volume fraction silica-based non-Newtonian fluid

Fig. 8 Steady shear viscosity plotted against shear stress for
61% volume fraction silica-based non-Newtonian fluid

Journal of Applied Mechanics NOVEMBER 2009, Vol. 76 / 061011-5

Downloaded 04 May 2010 to 171.66.16.45. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



5 Fluid-Filled Foam Results and Discussion
A plot of the true stress-strain responses of the 70 pores/in.

foam saturated with the 61% volume fraction non-Newtonian fluid
loaded at constant velocities ranging from 31.25 mm/s to 250
mm/s is given in Fig. 9�a�. The dramatic increase in the true stress
of the NNF-filled foam with strain is evident. The true stress of
the NNF-filled foam is taken to be the load divided by current
area, which is calculated based on conservation of mass, as pre-
viously discussed. At any given strain, the true stress of the NNF-
filled foam and the corresponding instantaneous strain rate of the
foam can be determined. The recorded data and Fig. 9�a� are used
to generate the sample curve of the true stress response of the
NNF-filled foam plotted against the instantaneous strain rate of
the foam given in Fig. 9�b�. For instantaneous strain rates less
than 50 s−1, strains varying from 0.1 to 0.6 are plotted in incre-
ments of 0.1, corresponding to aspect ratios ranging from approxi-
mately 1 to 4. For instantaneous strain rates greater than 50 s−1

strains varying from 0.1 to 0.4 are plotted, corresponding to aspect
ratios ranging from 1 to 2.

The dynamic compressive response of the saturated NNF-filled
foam exhibits multiple regimes of behavior similar to the simple
shear behavior of the fluid itself given by the previous rheological
experiments �Figs. 7 and 8�. As shown in Fig. 9�b�, this behavior
corresponds to the first four regimes �R1–R4� of the fluid, previ-
ously discussed. At low instantaneous strain rates of the foam, the
rate of increase in true stress of the NNF-filled foam with instan-
taneous strain rate is actually less than that of a comparable New-

tonian fluid, indicating the viscosity drops with increasing instan-
taneous strain rate, corresponding to the shear-thinning regime R1.
The onset of the shear-thickening regime, corresponding to R2, is
also evident and, as expected, is found to occur with increasing
strain �or aspect ratio� or increasing instantaneous strain rate.
Similarly, behaviors corresponding to regimes R3 and R4 are also
evident. While distinguishing the transition between the upper pla-
teau regime R3 and the shear-thinning regime R4 in Fig. 9�b� may
be difficult at the given scale, the distinction is more apparent in
expanded scales provided later in Fig. 10.

In this study, we are primarily interested in modeling the be-
havior after shear thickening has occurred �R3 and R4� since most
engineering applications will utilize the NNF in this regime. For
example, the expected impact velocities for a helmeted head in a
motorcycle accident and a chest covered by standard body armor
subjected to a 1 kg trinitrotoluene �TNT� blast wave at a distance
of 1 m are on the order of 5 m/s and 10 m/s, respectively. This
results in instantaneous strain rates for a 0.01 m thick foam
sample of 500 s−1 and 1000 s−1, which are clearly beyond the
instantaneous strain rate of the foam required for the fluid to tran-
sition from regime R2 to regime R3 �Fig. 9�b��. In addition, our
focus was on modeling the behavior in regime R3 and beyond
because analytically modeling the behavior at strain rates less than
those of regime R3 is a complex task, which requires accounting
for the fluid-structure interaction and the dramatic variation of the
viscosity across the specimen. As previously discussed this prob-
lem is avoided for strain rates beyond the transition strain rate
between regimes R2 and R3, where the effects of the fluid-
structure interaction and the foam itself can effectively be ne-
glected.

To compare our model �Eq. �9�� with our data, in the upper
plateau regime R3 and in the shear-thinning regime R4, we exam-
ine data beyond the transition strain rate between regimes R2 and
R3. Figure 10 shows the true stress response of a 70 pores/in. foam
filled with the non-Newtonian fluid under dynamic compression
plotted against the instantaneous strain rate of the foam for a
range of strains varying from �=0.10 to �=0.40 and a range of
instantaneous strain rates ranging from �50 s−1 to �400 s−1.
Each point is the average of four data points with error bars cor-
responding to one standard deviation. The error bars in the true
stress direction are quite large as expected since small variations
in the volume fraction of the silica particles in the fluid can result
in large changes in viscosity but nearly no change in the exponent
variable n. Correspondingly, the error bars in the instantaneous
strain rate direction arise because changes in the energy absorp-
tion of the NNF-filled foam result in changes in the energy of

Fig. 9 „a… True stress plotted against strain for a 70 pores/in.
foam filled with 61% volume fraction silica-based non-
Newtonian fluid. −Ḣ=31.25 mm/s „�…, 62.5 mm/s „�…, 125 mm/s
„�…, and 250 mm/s „�…, corresponding to instantaneous strain
rates of 2.5 s−1, 5 s−1, 10 s−1, and 20 s−1 at ε=0.0 strain, re-
spectively. „b… True stress plotted against instantaneous strain
rate for a 70 pores/in. foam filled with 61% volume fraction
silica-based non-Newtonian fluid. Regimes R1–R4 correspond
to fluid behavior regimes.

Fig. 10 True stress plotted against instantaneous strain rate
for a 70 pores/in. foam filled with 61% volume fraction silica-
based non-Newtonian fluid, ranging from 0.10 to 0.40 strain.
The model corresponds to regimes R3 and R4 of the fluid given
by Eq. „10….
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impacting drop tower and thus its velocity. The true stress contri-
bution predicted by the model given by Eq. �9� is plotted in Fig.
10 for both the plateau regime R3 and the shear-thinning regime
R4, with their corresponding parameters m and n. To fit the true
stress model constants CRi were introduced for each regime
�where i corresponds to the regime� into Eq. �9� giving

	avg = 2CRi�2n + 1

n
�n m

n + 3
� Ro

Ho
�n+1�− Ḣ

H
�n� 1

1 − �
�3�n+1�/2

�10�

The constants CR3
and CR4

given in Eq. �10� were found by es-
tablishing a measure of the goodness of fit and finding the value of
CR3

and CR4
, which maximizes this measure. The measure for the

goodness of fit R2 is taken to be the sum of the squares of the
difference between the experimental values and the average ex-
perimental value divided by the sum of the squares of the differ-
ence between the experimental values and the predicted values.
Based on this measure of the goodness of fit, the empirical con-
stants for regimes R3 and R4 are determined to be CR3

=0.94 and
CR4

=80, respectively. These constants can be attributed primarily
to two factors. First, as previously discussed, even small varia-
tions in the volume fraction of particles can result in large changes
in the viscosity curves and thus the observed average true stress.
Second, the increased tortuosity of the fluid path in the foam may
also play a substantial role since the flow through the foam is not
identically in shear flow.

Using the constants CR3
and CR4

, the transition between the
plateau regime R3 and the shear-thinning regime R4 is found by
setting Eq. �10�, evaluated with constants �m and n� corresponding
to the plateau regime, equal to Eq. �10�, evaluated with constants
�m and n� corresponding to the shear-thinning regime. The result-
ing equation governs the transition between R3 and R4 and is
found to be

�− Ḣ

H
� = � CR4

3CR3

�1.23�Ho

Ro
��1 − ��3/2 �11�

Using Eq. �11�, for any given initial aspect ratio and strain, the
instantaneous strain rate, corresponding to the transition between
regimes R3 and R4, can be determined. While Eq. �11� is not
generalized for all fluids discussed in this paper, it is applicable to
the 61% silica-based non-Newtonian fluid, which is the focus of
this analysis. Since there is no model for the transition between
the shear-thickening regime R2 and the plateau regime R3, the
onset of the behavior corresponding to R3 is not predicted in this
study; the model was plotted down to an arbitrary instantaneous
transition strain rate of the foam selected to be 50 s−1.

The constants CR3
and CR4

are found to be independent of the
initial aspect ratio, the strain, and the instantaneous strain rate of
the foam as demonstrated in Fig. 10. Furthermore, the constants
CR3

and CR4
are also found to be independent of the grade of the

foam beyond the shear-thickening transition. An additional study
was performed to analyze the effects of varying the pore size of
the foam. The true stress response of the NNF-filled foam was
compared for 70 pores/in., 80 pores/in., and 90 pores/in. foam
both prior to and after shear thickening �regimes R2 and R4�. Prior
to shear thickening, the true stress response is found to be highly
dependent on the grade of the foam as demonstrated with New-
tonian fluids �7�. Prior to shear thickening, the standard deviation
in the true stress response of the three foam grades as a percentage
of the average value was found to be 17.7%, which corresponds
well with the results presented in Ref. �7�. However, after shear
thickening has occurred, the true stress response of the NNF-filled
foam is found to be independent of the grade of the foam, with a
standard deviation in the true stress as a percentage of the average
value of only 2.7%. This finding further supports the evidence
shown in Fig. 2 that the fluid-structure interaction is negligible at

high loading rates �high stresses� after shear thickening has oc-
curred. Thus, the constants CR3

and CR4
are independent of the

grade of the foam beyond the shear-thickening transition.
The need for the introduction of the empirical constants CR3

and
CR4

is expected and can primarily be attributed to the fact that
small variations in the volume fraction of the silica particles in the
fluid can result in large changes in viscosity, corresponding to m
in Eq. �10�, but nearly no change in the exponent variable n. This
effect could readily account for such an apparently large constant
while explaining the fact that the true stress scales accurately with
all of the parameters in Eq. �10�. The need for different empirical
constants for each regime �CR3

versus CR4
� can also be seen

through this argument. If the actual plateau viscosity is higher
than that measured in the rheological experiments, the need for a
constant greater than unity is evident for regime R4. Correspond-
ingly, this effect would necessitate a constant greater than unity in
regime R3 as well; however, since regime R3 only spans a very
short range of local strain rates and local strain rates are expected
to vary strongly over the radius of the foam, it is expected that not
all of the fluid is accurately modeled by the maximum plateau
viscosity �regime R3�. This would result in the model overestimat-
ing the average viscosity in the fluid and necessitating a constant
less than unity to account for this overestimation. This effect
would be less pronounced in the shear-thinning regime R4 since
the range of local strain rates spanned by this regime is much
larger than that of R3. Therefore, the need for different constants
for each regime �CR3

versus CR4
� is evident. The effects overall

result in a constant for regime R3, which is on the order of unity,
and a constant or regime R4, which is much greater than unity.

The empirical constants CR3
and CR4

may also indicate that a
number of effects, which have been neglected based on the as-
sumptions of the analysis, may be important. For instance, this
analysis does not consider the tortuosity in the fluid path in the
open-cell foam, which may also contribute to the need for the
constants CR3

and CR4
, to be introduced. In addition, this model

assumes that the radial velocity is uniform in the z-direction or
that the fluid remains in a cylindrical shape as it undergoes defor-
mation. This is a strong assumption as demonstrated in Fig. 1,
where little variation in the radius up to 0.30 strain is detectable.
However, even small variations in the radius of the NNF-filled
foam can result in changes in the local shear rate profile, giving
rise to large discrepancies between the predicted viscosity and the
actual viscosity in the experiment and thus a discrepancy in the
true stress response of the NNF-filled foam. Furthermore, this
model uses the lubrication approximation, which assumes that the
velocity in the z-direction is much less than the velocity in the
r-direction, and the corresponding pressure drop in the z-direction
is negligible compared with that in the r-direction. The lubrication
approximation technique is known to be a powerful method for
solving complex viscous flows. When applied to actual systems
the fluid response is often found to converge very rapidly to the
lubrication approximation as the ratio of the characteristic radius
to the characteristic height is increased. Dawson et al. �7� found
that the lubrication approximation for a Newtonian fluid-filled
foam under dynamic compression is highly applicable beyond an
aspect ratio of 4; however, examining their data shows that even
for aspect ratios as small as 1 the lubrication model provides a
good approximation. In the experiments presented in this paper
the aspect ratios ranged from 1.17 to 3.95. Again, this could result
in a small discrepancy in the local shear rate and a large discrep-
ancy in the predicted true stress response of the NNF-filled foam
from the model. Moreover, the fluid flow may not be considered
entirely shear flow, which would result in a much lower predicted
true stress response than actually observed experimentally. In ad-
dition, the local shear rate of the fluid may actually differ from
that predicted by the model in part due to dependence on the
fluid-foam interaction. Although this contribution is expected to
be negligible the load response of the NNF-filled foam is three
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orders of magnitude beyond that of the foam alone, and the char-
acteristic diameter of the particles in the silica suspension is three
orders of magnitude smaller than the characteristic pore size of the
foam. Lastly, as previously discussed, this model assumes that the
flow is dominated by viscous forces. This is an extremely robust
assumption for the experiments presented in this analysis, consid-
ering the fluid viscosity increases approximately three orders of
magnitude and approaches that of “solidlike” behavior after the
shear-thickening transition. As previously discussed, the shear-
thinning regime R4 occurs over roughly four orders of magnitude
of the local strain rate of the fluid, based on the behavior of fluid
with lower volume fractions of particles, which have plateau re-
gimes R5 at a viscosity corresponding to the minimum viscosity of
the fluid. Therefore, it is expected that the shear-thinning regime
R4 would also last several orders of magnitude of the instanta-
neous strain rate of the NNF-filled foam. Based on this, the fluid
maintains an extremely high viscosity with increasing instanta-
neous strain rate for several orders of magnitude beyond the tran-
sition between the shear-thickening regime R2 and the plateau
regime R3. In the experiments presented in this paper, the maxi-
mum Reynolds was Re=0.027, which is much less than unity,
demonstrating that the assumption that the flow is dominated by
viscous forces is highly applicable. However, for extremely high
rate loading scenarios, inertial forces may become more important
and this viscous fluid assumption may no longer be valid. There-
fore, this model may only provide an order of magnitude estimate
beyond loading velocities of �50 m /s �instantaneous strain rates
of �5�103 s−1� for samples with similar aspect ratios as those
discussed in this paper. As previously discussed, nearly all com-
parable engineering designs used in dynamic compression, rang-
ing from motorcycle helmets to blast loading protective equip-
ment, would have loading rates applicable to this model.

Overall, the model for the true stress response of a non-
Newtonian fluid-filled foam under dynamic compression given by
Eq. �10� is strongly supported by experimental results, despite the
need for a constant in each regime to account for some of the
assumptions of the model. The model is found to describe the
experimental results well for a variety of aspect ratios, strains, and

instantaneous strain rates of the foam on the order of −Ḣ /H
=1.0�102 s−1, independent of foam grade for a low-density elas-
tomeric foam. The model is found to fall within one standard
deviation of all of the experimental data presented in Fig. 10. A
method is also presented to identify the transition instantaneous
strain rate between regimes R3 and R4, given an initial aspect ratio
and strain.

6 Conclusion
A model for the true stress-strain response of a shear-

thickening-fluid-filled, reticulated, elastomeric foam under dy-
namic compression beyond the shear-thickening transition is pre-
sented. This model is analytically tractable and useful in
developing an understanding of the effects of material design pa-
rameters on the response of a NNF-filled foam under dynamic
loading. To the authors’ knowledge this is the first such analytical
model, which explains this complex phenomenon for this selected
group of non-Newtonian fluids and may be useful in the develop-
ment of innovative new products in the field of protective equip-
ment. In particular, this analytical model will be an essential step
toward the successful development of a composite armor capable
of impeding shockwaves caused by blast loading by providing
insight into the energy absorption capabilities and wave propaga-
tion characteristics of a NNF-filled foam under dynamic loading.
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Anisotropic Materials Behavior
Modeling Under Shock Loading
In this paper, the thermodynamically and mathematically consistent modeling of aniso-
tropic materials under shock loading is considered. The equation of state used represents
the mathematical and physical generalizations of the classical Mie–Grüneisen equation
of state for isotropic material and reduces to the Mie–Grüneisen equation of state in the
limit of isotropy. Based on the full decomposition of the stress tensor into the generalized
deviatoric part and the generalized spherical part of the stress tensor (Lukyanov, A. A.,
2006, “Thermodynamically Consistent Anisotropic Plasticity Model,” Proceedings of
IPC 2006, ASME, New York; 2008, “Constitutive Behaviour of Anisotropic Materials
Under Shock Loading,” Int. J. Plast., 24, pp. 140–167), a nonassociated incompressible
anisotropic plasticity model based on a generalized “pressure” sensitive yield function
and depending on generalized deviatoric stress tensor is proposed for the anisotropic
materials behavior modeling under shock loading. The significance of the proposed
model includes also the distortion of the yield function shape in tension, compression,
and in different principal directions of anisotropy (e.g., 0 deg and 90 deg), which can be
used to describe the anisotropic strength differential effect. The proposed anisotropic
elastoplastic model is validated against experimental research, which has been published
by Spitzig and Richmond (“The Effect of Pressure on the Flow Stress of Metals,” Acta
Metall., 32, pp. 457–463), Lademo et al. (“An Evaluation of Yield Criteria and Flow
Rules for Aluminium Alloys,” Int. J. Plast., 15(2), pp. 191–208), and Stoughton and Yoon
(“A Pressure-Sensitive Yield Criterion Under a Non-Associated Flow Rule for Sheet
Metal Forming,” Int. J. Plast., 20(4–5), pp. 705–731). The behavior of aluminum alloy
AA7010 T6 under shock loading conditions is also considered. A comparison of numeri-
cal simulations with existing experimental data shows good agreement with the general
pulse shape, Hugoniot elastic limits, and Hugoniot stress levels, and suggests that the
constitutive equations perform satisfactorily. The results are presented and discussed, and
future studies are outlined. �DOI: 10.1115/1.3130447�

Keywords: anisotropic material, anisotropic plasticity, shock waves, equation of state,
stress decomposition

1 Introduction
The investigation of anisotropic material behavior �such as alu-

minum alloys and composite materials� has found significant in-
terest in the research community due to the widespread applica-
tion of anisotropic materials in aerospace and civil engineering
problems. For example, aluminum alloys are one of the main ma-
terials in the construction of modern aircraft and rockets. The
strain rate dependent mechanical behavior of anisotropic material
�e.g., aluminum alloys� in air and space vehicles is important for
applications involving impact. These applications cover a wide
range of situations such as crashworthiness and protective armors
in air and space vehicles and other applications. Since shock-wave
and high-strain-rate phenomena are involved in many physical
phenomena, we are interested in understanding the mechanical
properties of material under these nontrivial conditions. To de-
scribe the anisotropic material response under shock loading the
following general aspects need to be investigated: appropriate
constitutive equations to describe the strength effect and constitu-
tive equations to describe the equation of state �1�.

Several anisotropic yield criteria and their associated yield sur-
faces have been developed. One of the first yield conditions pro-
posed for the anisotropic material is the quadratic yield criterion
proposed by von Mises �2� for plastically incompressible metal
crystals with different lattice symmetries. In the theory of aniso-

tropic yield criteria, the most well-known work is Hill’s quadratic
formulation �2�, which contains six parameters specifying the
state of anisotropy, but is similar in form to von Mises’s criterion
for isotropic metals. From the literature review, a general group of
anisotropic yield criteria suitable for anisotropic metals can be
found. This group includes the yield conditions proposed by Bas-
sani �3�, Hosford �4�, the yield surface of 4 degree specified by
Gotoh �5,6�, Arminjon et al. �7�, as well as yield surfaces of k
degree analyzed by Barlat and Lian �8�, Barlat et al. �9,10�, Kara-
fillis and Boyce �11�, Barlat et al. �12,13�, Bron and Besson �14�,
Darrieulat and Montheillet �15�, Stoughton and Yoon �16�, Kow-
alczyk and Gambin �17�, Hu �18�, Hashiguchi �19�, Hu �20,21�,
and Barlat et al. �22�.

The main objectives of the current paper are as follows: �1� to
construct the mathematically consistent constitutive equations
based on the nonassociated plasticity model suitable for shock-
wave propagation in anisotropic materials, �2� to present the de-
scription of the anisotropic strength differential effect �SDE�
based on the proposed nonassociated plasticity model, and �3� to
present the validation of the proposed model against experimental
data for different aluminum alloys AA2008 T4, AA2090 T3,
AA7108 T1, AA6063 T1, and AA7010 T6. Note that the consti-
tutive equations based on the associated plasticity models suitable
for shock-wave propagation were considered in Ref. �1�. It has
been proposed that the development of a nonassociative plasticity
model is required to accurately describe the yield surface and a
thermodynamically consistent evolution of the plastic strain tensor
�1,16,23,24�.
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2 Equation of State (Isotropic Case)
Modern, high-resolution methods of monitoring the stress and

particle velocity histories in shock waves and equipment have
been created �25�; numerous investigations into the mechanical
properties of different classes of materials have been undertaken
�26–32�, and numerous phenomenological as well as microscopic
models have been developed �1,27,33–36�. During shock loading,
the material undergoes nonlinear behavior; therefore an equation
of state �EOS� is required to describe the material’s response to
these conditions. It is convenient in numerical codes to have an
analytical form of the EOS, but such an analytic form is at best an
approximation to the true relationship. The EOS for isotropic ma-
terials typically defines the pressure as a function of density � �or
specific volume, �� and specific internal energy e. A very popular
form of equation of state that is used extensively for isotropic
solid continua is the Mie–Grüneisen EOS

p = f��,e� = Pr��� +
����

�
�e − er���� �1�

where � is the specific volume and ���� is the Grüneisen gamma
defined as

���� = �� �p

�e
�

�

�2�

Traditionally, � is taken to be constant �=�0; alternatively, it
could have been assumed that �0 /�0=���� /�=const in Eq. �1�.
Functions Pr��� and er��� are assumed to be known functions of �
on some reference curve. Possible reference curves include the
shock Hugoniot curve, a standard adiabatic curve �e.g., the adia-
batic through the initial state �p0 ,�0��, the 0 K isotherm, the isobar
p=0, the curve e=0, or some composite curve of one or more of
the above curves to cover the complete range of interest in the
parameter �. The most commonly used form of the Mie–
Grüneisen equation of state for solid materials, which uses the
shock Hugoniot as the reference curve, is given as follows:

p = f��,e� = PH · �1 −
�

2
�� + ��e �3�

where PH is the Hugoniot pressure, �=� /�0−1 is the relative
change in volume, � is the Grüneisen parameter, � is the density,
e is the specific internal energy, and � is the current specific vol-
ume.

The Rankine–Hugoniot equations for the shock jump condi-
tions can be regarded as defining a relation between any pair of
the �, p, e, and up variables and U �27�. In many dynamic experi-
ments, up �the particle velocity directly behind the shock� and U
�the velocity at which the shock wave propagates through the
medium� are measured. Generally, a shock velocity U is a nonlin-
ear function of particle velocity up and it is given by the following
relation �26�:

U = c + S1up + S2�up

U
�up + S3�up

U
�2

up �4�

and Grüneisen’s gamma is given by

� =
�0 + a�

1 + �
�5�

Therefore, the Grüneisen equation of state with cubic shock ve-
locity as a function of particle velocity defines pressure as

p =

�0c2��1 + �1 −
�

2
�� −

�

2
�2�

�1 − �S1 − 1�� − S2
�2

� + 1
− S3

�3

�� + 1�2�2

+ �1 + �� · � · E when � � 0 �6�

p = �0c2� + �1 + �� · � · E when � � 0 �7�

where E is the internal energy per initial specific volume, c is the
intercept of the U−up curve, S1, S2, and S3 are the coefficients of
the slope of the U−up curve Eq. �4�, �0 is the Grüneisen gamma,
and a is the first order volume correction to �0. Parameters c, S1,
S2, S3, �0, and a represent the material properties, which define its
EOS. Parameters have been defined to cover a large number of
isotropic materials �26�.

3 Equation of State (Anisotropic Case)
In this work, the generalized decomposition of the stress tensor

�1,37� is assumed and given by

�ij = − p�	ij + S̃ij, 	ijS̃ij = 0 �8�

where p� is the total generalized pressure and S̃ij is the generalized
deviatoric stress tensor. It should be noted that in all this work
contraction by repeating indices is assumed. Using Eq. �8�, the
following expression for “pressure” can be obtained:

p� = −
�ij	ij

	kl	kl
= −

1

			2�ij	ij �9�

where 			2=	ij	ij. Finally using Eqs. �8� and �9�, the expression
for the generalized deviatoric part of the stress tensor can be re-
written in the following form:

S̃ij = �ij − 	ij ·
1

			2�kl	kl �10�

For anisotropic materials, the total hydrostatic pressure has been
defined �1,37� and given as

p� = p +

ijS̃ij

	ij
ij
, p = −


ij�ij

	ij
ij
�11�

where p is the pressure related to the volumetric deformation, and

S̃ij is the generalized deviatoric part of the stress tensor. The rela-
tion �11� is the correct generalized pressure for the elastic regime.
To provide an appropriate description of behavior for general an-
isotropic materials at high pressures, an equation of state for p
�pressure related to the volumetric deformation� has to be defined
as

pEOS

=
 �0c2��1 + �1 −
�

2
�� −

�

2
�2�

�1 − �S1 − 1�� − S2
�2

� + 1
− S3

�3

�� + 1�2�2
+ �1 + �� · � · E, � � 0

�0c2� + �1 + �� · � · E, � � 0
�

�12�
which also describes correctly the material’s behavior at small
volumetric strains. Therefore, an appropriate description of gen-
eral hydrostatic pressure at high pressures has the following form:

p� = pEOS +

ijS̃ij

	ij
ij
�13�

Note that the methodology described above can be applied for all
anisotropic materials and represents a mathematically consistent
generalization of the conventional isotropic case. The methodol-
ogy for calculation of components of the tensor 	ij has been pre-
viously defined �1,37�. The elements of tensor 	ij can be written
in the following form:

	11 = �C11 + C12 + C13� · 3K̄C, 	22 = �C12 + C22

+ C23� · 3K̄C, 	33 = �C13 + C23 + C33� · 3K̄C �14�

061012-2 / Vol. 76, NOVEMBER 2009 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.45. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



K̄C = 1/�3 · ��C11 + C12 + C13�2 + �C12 + C22 + C23�2 + �C13 + C23 + C33�2�

KC =
1

9K̄C

, 	ij	ij = 			2 = 3 �15�

where Cij is the stiffness matrix �written in Voigt notation�. The
relation �15� describes the norm of tensor 	ij, which reduces to
Kronecker delta symbol norm in the limit of isotropy. Therefore,
the norm of 	ij is taken to be �3. Furthermore, the following set
of equations for the components of the tensor 
ij can be written
�1,37��:


11 = �J11 + J12 + J13� · 3KS, 
22 = �J12 + J22 + J23� · 3Ks, 
33

= �J13 + J23 + J33� · 3Ks

Ks = 1/�3 · ��J11 + J12 + J13�2 + �J12 + J22 + J23�2 + �J13 + J23 + J33�2�

�16�


ij
ij = 	
	2 = 3

where Jij are elements of compliance matrix �written in Voigt
notation�. To be consistent with the definition of the bulk speed of
sound c for isotropic material, the following definition:

c =�KC

�0
= c0 �17�

is assumed for anisotropic bulk speed of sound. Here the first
generalized bulk modulus KC is defined according to Eq. �15�.
Based on methodology previously described, we can conclude
that the two fundamental tensors 	ij and 
ij, which represent the
material properties, have been defined. Both of them can be con-
sidered as generalizations of the Kronecker delta symbol, which
plays the main role in the theory of isotropic material. Using two
fundamental tensors 	ij and 
ij, the definitions of total pressure
and pressure corresponding to the volumetric deformation can be
defined. In the limit of isotropy, tensors 	ij and 
ij have the fol-
lowing values 	11=	22=	33=1 and 
11=
22=
33=1, and the
proposed generalization returns to the traditional classical case
where tensors 	ij and 
ij equal �ij, and Eqs. �9�–�11� take the
following form:

p� = −
	ij�ij

	ij	ij
= −

�kk

3
, p = −


ij�ij


ij	ij
= −

�kk

3
, p� = p, Sij = S̃ij

= �ij − �ij
�kk

3
, KC =

E

3�1 – 2��
= KS = K �18�

Here p�= p is the conventional hydrostatic pressure and Sij is the
conventional deviatoric stress tensor. Also, the two parameters Kc
and Ks were considered as the first and second generalized bulk
moduli. In the limit of isotropy they reduce to the well-known
expression for conventional bulk modulus K=E /3�1–2��.

3.1 Thermodynamically Consistent Anisotropic Strength
Model. It is important to note Ilyushin’s postulate of stability

� :d�̃p
0 for any isothermal processes �38�. Therefore, the nec-
essary requirement for material at the continuum level is specified
by the following condition: The plastic work rate and the rate of
change in the effective plastic strain must be positive for all pos-
sible modes of plastic deformation. The expression for the plastic
dissipation rate �multiplying by temperature� of the anisotropic
material can now be considered as follows:

ẆM = �:�̇̃p = �− 	ijp
� + S̃ij�Dij

p = − p�	ijDij
p + S̃ijDij

p = Y · �̇̄p

�19�

where ẆM is the plastic dissipation rate �multiplying by tempera-
ture�, � is the stress tensor, �̃p is the plastic strain tensor, Dij

p is the
symmetric part of the plastic velocity gradient tensor, and �̄p is the
effective plastic strain. Therefore, the necessary condition for an-

isotropic plasticity model based on generalized decomposition of
the stress tensor can be written as

− p�	ijDij
p = 0 for any p� or 	ijDij

p = 0 and S̃ijDij
p = Y · �̇̄p 
 0

�20�
The assumption �20� defines an additional constraint on material
behavior and shape of anisotropic plastic potential. Also the as-
sumption �20� can be interpreted as equivalence of plastic dissi-
pation rate of the general anisotropic material and plastic dissipa-
tion rate based on the generalized deviatoric part of the stress
tensor �similar assumption about the equality of the plastic dissi-
pation rate of general anisotropic material and the equivalent iso-
tropic material has been made by Karafillis and Boyce �11� for
their model�. Therefore, we have the following set of assumptions
for the thermodynamically consistent anisotropic plasticity based
on the generalized decomposition of the stress tensors �8�–�10�
and �13�:

1. F̂�S̃ij,p
�� = Y��̄p�

2. Dij = Dij
e + Dij

p , Dkk
p = 0 �conventional imcompressibility�

3. Dij
p = �̇

�g�S̃ij,�k�

� S̃ij

or Dij
p = �̇VijklS̃kl and 	ijDij

p

= 0 or 	ij

�g�S̃ij,�k�

� S̃ij

= 0 �generalized incompressibility�

�21�

where the function F̂� � describes the shape of the yield surface,

g=g�S̃ij ,�k� is the plastic potential, �k represents a set of state

variables, S̃ij is the generalized deviatoric stress tensor, Dij
e is the

symmetric part of the elastic velocity gradient tensor, Dij is the
strain rate �symmetric part of velocity gradient�, and Vijkl is the
plastic flow matrix. It is also important to note that the generalized
incompressible plasticity flow defined by condition 	ijDij

p =0. This
condition itself defines special class of plasticity flow.

4 Nonassociated Anisotropic Plasticity Model

4.1 An Anisotropic Yield Function. The objectives of this
section are to construct the mathematically consistent yield func-
tion of a fully anisotropic material based on generalized decom-
position of the stress tensor into generalized spherical part �gen-
eralized hydrostatic pressure� and generalized deviatoric stress
tensor. Based on research by Spitzig and Richmond �23�, Stough-
ton and Yoon �16�, and the aforementioned assumptions specified
by Eq. �21�, the following yield function is considered:

F̂�S̃ij� = ��S̃ij��1 + �p̄�� � Y��̄p�, p̄� =
�ij	ij

	kl	kl
=

1

			2�ij	ij, p̄�

= − p� �22�

where p̄� is the generalized hydrostatic stress and ��S̃ij� is de-
scribed by the generalized Hill’s yield function

�2�S̃ij� = F�	33S̃yy − 	22S̃zz�2 + G�	11S̃zz − 	33S̃xx�2 + H�	22S̃xx

− 	11S̃yy�2 + 2NS̃xy
2 + 2LS̃yz

2 + 2MS̃xz
2 �23�

The material constants �, F, G, H, N, L, and M are specified in
terms of selected initial yield stresses in uniaxial tension, com-
pression, and equibiaxial tension. It is worth noting that the plas-
ticity model presented in Eq. �23� is naturally independent from
the generalized hydrostatic stress p̄�=�ij	ij /	ij	ij and, therefore,
the following equality can be written:

�2�S̃ij� � �2��ij�, �ij = p̄�	ij + S̃ij, p̄� � 0 �24�
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where S̃ij is the generalized deviatoric stress tensor and �ij is the
stress tensor.

4.2 The Plane-Stress Condition. In the case of the plane-
stress condition, Eqs. �22� and �23� can be written as follows:

F̂�S̃ij� = ��S̃ij��1 + �p̄�� � Y��̄p�, p̄� =
1

			2 �	11�11 + 	22�22�

�25�
and

�2�S̃ij� = F�	33S̃yy − 	22S̃zz�2 + G�	11S̃zz − 	33S̃xx�2 + H�	22S̃xx

− 	11S̃yy�2 + 2NS̃xy
2 �26�

The material constants �, F, G, H, and N are specified in terms of
selected initial yield stresses in uniaxial tension, compression, and
equibiaxial tension; this approach similar to that adopted in Ref.
�16�.

4.3 Calibration of the Yield Function. The aluminum alloys
AA2008 T4, AA2090 T3, AA7108 T1, and AA6063 T1 will be
used for the calibration process of the proposed yield function.
The data for aluminum alloys AA2008 T4 and AA2090 T3 have
been taken from the work of Stoughton and Yoon �16�. It is re-
ported that the yield under compression data is normalized to �C0,
so that the scale of the compressive stress cannot be determined
�16�. This problem was resolved by arbitrarily setting �C0 to be
1% larger than �T0 �see Ref. �16��. Arbitrarily setting �C0 can lead
to anomalous relationships between components of the general-
ized Kronecker symbol 	ij. As a result, more detailed and accurate
experimental data are required.

Figure 1 compares the contours of the yield function defined by
Eqs. �22� and �23�, for various levels of shear stress, and for
aluminum alloys AA2008 T4 and AA2090 T3, respectively. Ma-
terial parameters are presented in Table 1.

The results compare well with the following two sets of experi-
mental data: data dealing with uniaxial compression/tension along
the principal directions �rolling and transverse directions�, and
data associated with equibiaxial tension. It is important to note

that none of the experimental data shown on these figures repre-
sents a true prediction �see, for example, Ref. �16��—such data
points have been used to define the material parameters in the
presented plasticity model. In conclusion, the proposed yield func-
tion is mathematically consistent, and the plots demonstrate its
convexity as well as its flexibility in approximating experimental
data.

The experimental results published by Lademo et al. �24� were
also used to calibrate the anisotropic plasticity model �yield func-
tion�. Note that the experimental measurements in Ref. �24� do not
include the experimental data for compression and equibiaxial
tension. Hence, it is impossible to use an approach like that de-
scribed above �one based on the yield stress measurements�. In the
aforementioned paper, a method for the calibration of the pro-
posed yield criteria was based on the yield stresses in the 0 deg,
45 deg, and 90 deg directions, and also the R-ratio in the 0 deg-
direction. It has also been assumed that �=0 for AA7108 T1 and
AA6063 T1. The parameters defining the yield surface of AA7108
T1 and AA6063 T1 are presented in Table 2.

A comparison of the measured and predicted values of the yield
stress is presented in Fig. 2 for AA7108 T1 and AA6063 T1,
respectively.

4.4 Anisotropic Plastic Potential. The system formulated in
Eq. �21� includes two restrictions for a plastic potential, these
restrictions expressed in terms of the plastic strain rate tensor. The
first is the conventional incompressibility restriction, Dkk

p =0; and

Fig. 1 Contour plots of the proposed yield surface at constant shear stress for the AA2008 T4 and AA2090 T3
alloys, respectively. The numbers in the legend refer to the magnitude of the shear stress in megapascal. The
experimental data used to define the proposed yield surface at zero shear stress are also present.

Table 1 Material properties for AA2008 T4 and AA2090 T3

Material Yield function parameters

AA2008 T4

F=0.6945, G=−2.9656, H=3.7859, N=1.5243, Y
=211.7 MPa, ��MPa�−1=0.00069, 	11=0.1001, 	22

=1.2083, and 	33=1.2369

AA2090 T3

F=2.0462, G=1.0176, H=−1.1570, N=2.6306, Y
=279.6 MPa, ��MPa�−1=−0.00057, 	11=1.1907, 	22=

−0.4651, and 	33=1.1687
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the second is the generalized incompressibility restriction, 	ijDij
p

=0, for an anisotropic plastic flow. An application of such as-
sumptions to the modified quadratic Hill’s plastic potential is now
considered.

1. The modified Hill’s function for plastic potential can be
written as

F̂�S̃yy − S̃zz�2 + Ĝ�S̃zz − S̃xx�2 + Ĥ�S̃xx − S̃yy�2 + 2N̂S̃xy
2 + 2L̂S̃yz

2

+ 2M̂S̃xz
2 = Ŷ2 �27�

where F̂, Ĝ, Ĥ, N̂, L̂, and M̂ are material constants.
2. The decomposition of strain rate is expressed as follows:

Dij = Dij
e + Dij

p , Dkk
p = 0 �conventional incompressibility�

�28�
3. Assumption 2 of Eq. �21� can be expressed via the following

set of equations:

Dxx
p = 2�̇ · �Ĥ�S̃xx − S̃yy� − Ĝ�S̃zz − S̃xx��

Dyy
p = 2�̇ · �F̂�S̃yy − S̃zz� − Ĥ�S̃xx − S̃yy��

�29�
Dzz

p = 2�̇ · �− F̂�S̃yy − S̃zz� + Ĝ�S̃zz − S̃xx��

Dxx
p + Dyy

p + Dzz
p = 0

Following the definition of the components of strain rate, the con-
ventional incompressibility of plastic flow is naturally satisfied for
the considered plasticity model. However, the generalized incom-
pressibility of plastic flow is not satisfied for this model.

4. Therefore, the following assumption is required:

	ijDij
p = 0 �30�

As a result, we impose the following restrictions on parameters F̂,

Ĝ, and Ĥ, the latter representing the parameters of the modified
Hill’s criterion

F̂ · 0 + Ĝ�	11 − 	33� + Ĥ�	11 − 	22� = 0

F̂�	22 − 	33� + Ĝ · 0 + Ĥ�	22 − 	11� = 0 �31�

F̂�	33 − 	22� + Ĝ�	33 − 	11� + Ĥ · 0 = 0

Note that in the limit of isotropy �in this case, when tensor 	ij
��ij�, the system of equations described above in Eq. �31� is
trivially satisfied. The aforementioned system has rank 2 and,

therefore, we can express its solution in the forms F̂=A · F̄�	ij�,
Ĝ=A · Ḡ�	ij�, and Ĥ=A · H̄�	ij�, where F̄, Ḡ, and H̄ purely depend
on the material tensor 	ij as follows:

F̄�	ij� = −
�	22 − 	11�
�	22 − 	33�

, Ḡ�	ij� = −
�	11 − 	22�
�	11 − 	33�

, H̄�	ij� = 1

�32�

The solution �32� of the system described by Eq. �31� is obtained
for those cases in which 	11�	22�	33. In all other special cases,
the solution can be derived from Eq. �31�, which are true in any
case including case such as 	11=	33�	22. In general, the solu-
tion of the system described by Eq. �31� may be different to the
solution �32�. Furthermore, in cases of isotropy and special cases

of anisotropy where 	ij ��ij, it is reasonable to assume that F̂

= Ĝ= Ĥ=A. Material parameters A, N̂, L̂, and M̂ are defined based
on experimental data.

Table 2 Material properties for AA7108 T1 and AA6063 T1

Material Yield function parameters

AA7108 T1

F=0.6202, G=0.3745, H=0.6165, N=3.2459, Y
=291 MPa, ��MPa�−1=0.0, 	11=0.9934, 	22=1.0082,

and 	33=0.9984

AA6063 T1

F=1.1545, G=−0.2993, H=1.1701, N=2.4008, Y
=99.6 MPa, ��MPa�−1=0.0, 	11=0.9586, 	22=1.0509,

and 	33=0.9882

Fig. 2 Distribution of the yield stress versus angle in uniaxial tension for the AA7108 T1 and AA6063 T1 alloys
„proposed model…. The experimental data used to define the yield surface at zero shear stress are also present.

Journal of Applied Mechanics NOVEMBER 2009, Vol. 76 / 061012-5

Downloaded 04 May 2010 to 171.66.16.45. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



4.5 Calibration Anisotropic Plastic Flow. The plastic aniso-
tropy of a plane-strain compression/tension process is typically
characterized by the Lankford coefficient �39� or R-value, this
defined as the ratio of the width plastic strain, �W

p , to the through-
thickness plastic strain, �T

p. Although this simple definition offers
at first view an adequate and straightforward means of assessing
the in-plane and through-thickness flow and shape anisotropy of
sheets, experiments reveal that the R-value carries a significant
strain dependence even at very small strains �40–43��. Alterna-
tively, Kocks et al. �41� suggested using the ratio of the width
component of the plastic strain rate, Dp, to its through-thickness
component. It has also been demonstrated that R varies with the
true stress � �see Ref. �42��. From a thermodynamic perspective,
the plastic flow is an irreversible process. Thus, the plastic strains
obtained from the tensile test depend not only on the initial and
final states �the necked states� but also on the path followed be-
tween these states. This fact, noted by Spolidor �42�, is not taken
into account in the expression for R. Consequently, the appropri-
ate experimental data are required to describe the plasticity flow.
The plate-impact test has been developed and successfully used to
validate the plasticity model, the equation of state, damage mod-
els, and many other constitutive equations. Therefore, the plane
shock-wave technique will be used to demonstrate that the pro-
posed nonassociated anisotropic plasticity model �yield function
and plastic potential� performs satisfactorily.

5 Numerical Simulation of Anisotropic Elastoplastic
Shock-Wave Propagation

The plane shock-wave technique provides a powerful tool for
studying different material properties �see, for example, Refs.
�26,27�� and assessing a proposed theoretical model by comparing
its predictions with experimental data. In this section, plane wave
numerical experiments will be used to determine the Hugoniot
elastic limit �HEL� �or stress level associated with the elastic pre-
cursor wave� and the dynamic compressibility �or bulk modulus�
associated with the plastic wave for anisotropic aluminum alloy
AA7010 T6.

5.1 Numerical Framework. Plate-impact numerical simula-
tions were performed by solving conventional conservation laws
�dealing with mass, linear momentum, and energy� for monopolar
media �see Ref. �44��, these coupled with the appropriate consti-
tutive equations. A finite element method �see, for example, Refs.
�45–48�� was employed to solve the resulting system. The plates
�represented by numerical domains�, used in the numerical simu-
lation, are modeled as rectangular bars, as described by Lukyanov
�1�. Symmetric planes are applied on all sides of the bars in order
to obtain one-dimensional wave propagation along the length of
the bar. The mesh resolution is sufficient to resolve all the char-
acteristic of the stress pulse. During the numerical simulation of
the plate-impact problem, the stress update including EOS given
in Ref. �1� is used, in which the generalized pressure and internal
energy are coupled �Mie–Grüneisen EOS is used�. The constitu-
tive equations are implemented using a conventional time-
centering method �see, for example, Refs. �45,47��

�̄ij
n+1 = �ij

n + ��ik
n � jk

n+1/2 + �ik
n+1/2�kj

n + ����ij
n+1/2��tn+1/2 �33�

����ij
n+1/2 = CijklDkl

n+1/2, ��kl
n+1/2 = Dkl

n+1/2�tn+1/2 �34�

where �̄ij
n+1 is the trial stress tensor at time tn+1 �calculated using

elasticity constitutive equations�, �ij
n is the true stress tensor at

time tn, �kj
n+1/2 is the spin tensor �skew-symmetric part of the

velocity gradient� at time tn+1/2, Dkl
n+1/2 is the strain rate �symmet-

ric part of the velocity gradient� at time tn+1/2, ����ij
n+1/2 denotes a

Jaumann stress rate tensor at time tn+1/2, Cijkl is the elastic stiff-
ness matrix, and �tn+1/2 is the time step. During the constitutive
model calculations, the stresses and state variables are known at
the start of each increment and their values are updated at the end

of the increment, according to the change in total strain increment.
Using Eq. �33� and the generalized decomposition of the stress
tensor specified by Eqs. �8�–�11�, the expression for trial general-
ized deviatoric stress tensor can be written in the form

S̄̃ij
n+1 = Ŝ̃ij

n + Cijkl
	 dkl

n+1/2�tn+1/2, Cijkl
	 = �Cijkl

−
	ij · 	pqCpqkl

			2 �, dkl
n+1/2 = Dkl

n+1/2 −
Dii

n+1/2

3
�kl �35�

�p̄��n+1 = �p̄EOS�n+1 +

ijS̄̃ij

n+1

	ij
ij
, �p̄EOS�n+1 = PH

n+1 · �1

−
���n+1�

2
�n+1� + �n+1���n+1�ēn+1 �36�

ēn+1 = en + �n+1/2S̄̃ij
n+1/2Dij

n+1/2�tn+1/2 − �n+1/2�p̄��n+1/2D	
n+1/2�tn+1/2

− �n+1/2Qn+1/2D�
n+1/2�tn+1/2 �37�

D	
n+1/2 = 	ijDij

n+1/2, D�
n+1/2 = �ijDij

n+1/2, �n+1/2 = 1
2 ��n+1

+ �n�, �p̄��n+1/2 = 1
2 ��p̄��n+1 + �p��n� �38�

where Ŝ̃i j
n = S̃ij

n + �S̃ik
n � jk

n+1/2+ S̃jk
n �ik

n+1/2� ·�tn+1/2, in which S̃ij
n is the

true generalized deviatoric stress tensor at time tn �	ijS̃ij
n =0�, S̄̃i j

n+1

is the trial generalized deviatoric stress tensor at time tn+1, 	ij and

ij are the first and second generalized Kronecker symbols, dkl

n+1/2

is the deviator rate of deformation at time tn+1/2, �p̄��n+1 is the trial
generalized hydrostatic pressure at time tn+1, �p̄EOS�n+1 is the trial
equation of state pressure at time tn+1, Qn+1/2 is the artificial bulk
viscosity at time tn+1/2, �n+1 is the specific volume at time tn+1, and
ēn+1 is the trial specific internal energy at time tn+1. Note that the
equation of state �36� is linear in internal energy, ēn+1; meanwhile
the equation for the specific internal energy �37� is linear in
�p̄��n+1. Thus, Eqs. �36� and �37� can be written in the form �see,
for example, Refs. �45,47��

�p̄EOS�n+1 = An+1 + Bn+1ēn+1, ēn+1 = ên+1

− 1
2�n+1/2D	

n+1/2�tn+1/2�p̄EOS�n+1 �39�

The equation of state pressure �p̄EOS�n+1 can be evaluated by solv-
ing Eq. �39� as follows:

�p̄EOS�n+1 =
An+1 + Bn+1ên+1

1 +
1

2
Bn+1�n+1/2D	

n+1/2�tn+1/2
, ēn+1 = ên+1

−
1

2
�n+1/2D	

n+1/2�tn+1/2�p̄EOS�n+1 �40�

The iterative algorithm for corrections due to anisotropic plas-

ticity flow of the trial generalized deviatoric stress tensor, S̄̃i j
n+1,

generalized pressure, �p��n+1, and internal energy, ēn+1, is per-

formed when F̂�S̄̃i j
n+1 , �p��n+1��Y0. The iterative algorithm com-

prises the following system of equations:

���kl
p �n+1 = 2 · ��n+1 · VklpqS̃pq

n+1, ���kl
e �n+1 = ��kl

n+1

− ���kl
p �n+1, ���kk

p �n+1 = 0, 	kl���kl
p �n+1 = 0

�41�

�S̃kl
n+1�i+1 = S̄̃kl

n+1 − 2 · ��i
n+1

· �CklpqVpqrm −
	kl	pq

			2 CpqwqVwqrm��S̃rm
n+1�i �42�
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ei+1
n+1 = en + �n+1/2�S̃kl

n+1/2�i+1Dkl
n+1/2�tn+1/2

− �n+1/2�p��i+1
n+1/2D	

n+1/2�tn+1/2 − Qn+1/2D�
n+1/2�tn+1/2

�43�

�pEOS�i+1
n+1 =

Ai+1
n+1 + Bi+1

n+1êi+1
n+1

1 +
1

2
Bi+1

n+1�n+1/2D	
n+1/2�tn+1/2

, ei+1
n+1 = êi+1

n+1

−
1

2
�n+1/2D	

n+1/2�tn+1/2�pEOS�i+1
n+1 �44�

�p��i+1
n+1 = �pEOS�i+1
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n+1�i+1

	ij
ij
�45�

F̂��S̃kl
n+1�i+1,�p��i+1

n+1� − Y0 = 0 �46�
The algorithm proceeds until the following convergence condition
is met: ���i+1

n+1−��i
n+1�� ���i

n+1� · error, where ��i
n+1 is a scale

factor in Eq. �41�, obtained for each iteration i at time tn+1 by
solving the quadratic problem �46� with respect to ��i

n+1, and
error is a numerical error value, specified initially.

5.2 Shock-Wave Propagation in AA7010 T6 Anisotropic
Aluminum Alloy. This section describes the shock-wave propa-
gation in the anisotropic aluminum alloy AA7010 T6 using the
yield function and plastic potential proposed in this paper. The
parameters for the yield function and plastic potential are pre-
sented in Table 3.

The longitudinal and transverse stress histories have been re-
corded by using stress gauges, placed between target plate and 12
mm polymethyl methacrylate �PMMA� plate, within the target
assembly depicted in Fig. 3.

The experimental data for AA7010 T6 presented in this paper
correspond to the plate-impact test performed by Bourne and Mil-
lett at the Royal Military College of Science �published by De
Vuyst et al. �49�� with impact velocities of 450 m/s and 895 m/s.
The elastic material properties of AA7010 T6 are taken from De
Vuyst et al. �49�. The material properties of aluminum alloy 6082
T6 and PMMA plates are taken from Steinberg �26�. Figures 4 and
5 compare the experimental data with the numerical simulation
resulting from the new nonassociated anisotropic plasticity model
for the longitudinal and transverse cases.

The experimental values of 0.39 GPa and 0.33 GPa, for the
elastic response in the longitudinal and short transverse directions
�see Figs. 4 and 5, respectively�, correlate well with the modeled
values of HEL for the longitudinal and short transverse directions
�0.395 GPa and 0.333 GPa, respectively�. The associated errors
are 1.4% and 0.9%, respectively. Furthermore, the arrival time to

Table 3 Material properties for AA7010 T6

Functions Material constants

Yield function

F=0.6898, G=0.2873, H=0.6824, Y =500.0 MPa,
��MPa�−1=0.0, 	11�0.9976, 	22�1.0029, and 	33

�0.9994
Plastic potential F=0.7694, G=1.4843, H=−0.5067, and Y =500.0 MPa

EOS
c0=�KC /�0=5154 m /s, KC=74.65 GPa, S1=1.4, S2=0,

S3=0, �0=2.0, and a=0.48

Fig. 3 Schematic of the experimental target assembly

Fig. 4 Back-surface gauge stress traces from plate-impact experiments versus numerical simulation of stress
„PMMA… waves for plate-impact test „impact velocity 450 m/s…—target AA7010 T6 for longitudinal and transverse
directions, respectively
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the HEL and the plastic wave velocity correlate well with experi-
mental data. Further comparison shows that the pulse width and
the reloading trace are also in good agreement with the experi-
mental data �see Figs. 4 and 5�. The main conclusion obtained
from these results is that the nonassociated anisotropic plasticity
model, as it stands, is suitable for simulating elastoplastic wave
propagation in anisotropic solids. Furthermore, different HELs are
obtained when the material is impacted in different directions;
excellent agreement with the experimental data demonstrates that
the anisotropic plasticity model is adequate.

However, further work is required in the areas of experiment
and constitutive modeling, in order to find a better description of
anisotropic material behavior.

6 Conclusion
In this work, a thermodynamically and mathematically consis-

tent nonassociated anisotropic plasticity model, based on a gener-
alized decomposition of the stress tensor, is presented. A nonas-
sociated incompressible anisotropic plasticity model based on a
generalized pressure sensitive yield function is constructed. It is
shown that the proposed formulation of anisotropic plasticity in
the case of isotropic materials reduces to Spitzig and Richmond’s
plasticity model �23� �general pressure sensitive model�, which
incorporates a pressure independent �von Mises �2�� plasticity
model as a particular case, this consistent with the analytical and
experimental research in Ref. �23�. The significance of the pro-
posed model includes also the distortion of the yield function
shape in tension, compression, and in different principal directions
of anisotropy �e.g., 0 deg and 90 deg�, which can be used to
describe the anisotropic strength differential effect �anisotropic
SDE�. Based on experimental research, which has been published
by Spitzig and Richmond �23�, Lademo et al. �24�, and Stoughton
and Yoon �16�, the proposed anisotropic yield function is vali-
dated.

Furthermore, the generalized decomposition has allowed the
formulation and investigation of a generalized incompressibility
constraint, 	ijDij

p =0, on the plastic potential, where Dij
p is the

plastic strain rate, and 	ij is the generalized Kronecker delta sym-

bol �1�. Using the generalized deviatoric stress tensor and gener-
alized incompressibility constraint, 	ijDij

p =0, the plastic potential
was proposed. The plastic potential has been semi-analytically

constructed �that is, the coefficients F̂, Ĝ, and Ĥ in the principals
directions have been obtained from Eq. �31�. The remaining �gen-

erally four� material parameters A, N̂, L̂, and M̂ are defined based
on experimental data. Numerical simulations based on the pro-
posed nonassociated anisotropic plasticity model were performed,
in order to describe the behavior of the aluminum alloy AA7010
T6 under shock loading conditions. A comparison of the experi-
mental HELs with numerical simulation shows excellent agree-
ment �maximum error is 1.4%�. Furthermore, the good agreement
of the general pulse shape and Hugoniot stress level suggests that
the nonassociated anisotropic plasticity model performs satisfac-
torily. However, further numerical simulations of the proposed
constitutive equations, taking into account more precise aniso-
tropic SDE, are required �16�.
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Properties in Nonlinear
Hyperelastic Membranes—Part I:
Theoretical and Computational
Developments
We present an innovative method for characterizing the distributive elastic properties in
nonlinear membranes. The method hinges on an inverse elastostatic approach of stress
analysis that can compute the wall stress in a deformed convex membrane structure using
assumed elastic models without knowing the realistic material parameters. This approach
of stress analysis enables us to obtain the wall stress data independently of the material
in question. The stress and strain data collected during a finite inflation motion are used
to delineate the elastic property distribution in selected regions. In this paper, we discuss
the theoretical and computational underpinnings of the method and demonstrate its fea-
sibility using numerical simulations involving a saclike structure of known material
property. �DOI: 10.1115/1.3130805�
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1 Introduction
This article is the first of a multiple part paper that introduces a

new experimental method for delineating the distributive elastic
properties in hyperelastic membranes. The method is a nontrivial
generalization of the membrane inflation test initially introduced
by Rivlin and Saunders �1�. They showed that the stress-strain
data collected from the finite inflation of a circularly clamped thin
rubber sheet can be used to characterize the specific form of the
hyperelastic energy function. Since then, numerous studies have
further extended the method and explored the utility in thin-
walled biological organs �2–6�. This family of methods hinges on
a unique feature of the membrane equilibrium problem, that is, the
wall stress can be determined from equilibrium alone, indepen-
dent of the material parameters �static determinacy�. Elastostatic
problems having this property are rare in nonlinear elasticity, and
the corresponding systems have been almost invariably adapted to
design experimental protocols for characterizing the hyperelastic
stress-strain relation �1,7,8�.

Previously, the finite inflation test has been implemented to
axisymmetric problems only, in which the principal stresses are
available from the Laplace equation �5�. It is, however, worth
noting that the static determinacy is a property that holds not only
for axisymmetric membranes but also for a much broader family
of membrane systems, in particular, for convex saclike structures
that do not have any particular geometric symmetry. In this re-
gard, the potential of the inflation test has not been fully exploited.
If equipped with a suitable method for stress analysis, the inflation
test may be able to delineate the distributive elastic properties in
membrane structures of general convex shape. Such a capability
would be highly desirable in biomechanical applications.

Toward the goal of characterizing thin-walled biological soft

tissues, we are developing an extended inflation test for identify-
ing the distributive elastic properties in thin membranes. The
method is referred to as the pointwise identification method
�PWIM�. Compared to the axisymmetric inflation test, the key
difference lies in the approach of stress analysis. In PWIM, in-
stead of using the analytical solution, which is available only for
idealized shapes, the wall stress is computed numerically using a
newly devised membrane inverse method �9�, a subclass of the
finite element inverse elastostatic methods �FEIEMs� discussed in
several recent publications �10–15�. The inverse analysis takes as
the input a deformed configuration and the corresponding loads
and determines the stress in the deformed state assuming that
there is a globally attainable stress-free configuration. For a pres-
surized membrane structure, the inverse method can sharply cap-
ture the static determinacy in the wall stress. It has been demon-
strated that in the inverse approach the stress can be effectively
predicted using assumed material models �9�. In the context of
parameter identification, the method enables us to obtain the wall
stress independent of the material in question.

In this paper, we discuss the theoretical and computational
underpinings of PWIM. The method of inverse stress computa-
tion, the cornerstone of PWIM, is presented in Sec. 3. The evalu-
ation of membrane strain depends on what deformation data were
recorded; here, we discuss this matter assuming that a deforming
mesh is available. Nonlinear regression is utilized to estimate the
best fitting parameters once the form of strain energy function is
selected. By design, this component is independent of the stress
and strain computations and can be modified or improved sepa-
rately. To evaluate this method, we have performed numerical
experiments on a convex membrane of known strain energy func-
tion. The numerical experiment is described in Sec. 4 and the
results are presented in Sec. 5.

2 Elements of Membrane Theory

2.1 Kinematics. A membrane is a thin material body of
which the thickness is much smaller than the other dimensions.
Due to thinness, a membrane has negligible resistance to bending
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and transverse shear. Thus, it is modeled as a deformable surface
that sustains loads by virtue of the wall tension. There are numer-
ous ways to present the membrane equations, but we found the
tensorially covariant forms based on convected coordinates to be
the most convenient for our exposition. In this representation, the
surface is parametrized by surface coordinates ����=1,2� in
which a pair of coordinates P= ��1 ,�2� is regarded as the same
material point during the deformation. We denoted by x=x�P� the
position vector of the material point P in a deformed configuration
C�R3. The tangent vectors of the coordinate curves

g� =
�x

��� �1�

form the basis of the surface tangent space at x�P�. An infinitesi-
mal line element is given by dx=g�d��, and its length is deter-
mined from the first fundamental form

ds2 = dx · dx = g��d��d��, g�� = g� · g� �2�

The summation convention applies to repeated indices. The coef-
ficients g�� constitute the components of the surface metric tensor.
The contravariant surface basis vectors �g� ,�=1,2� are defined
by the relation g� ·g�=��

�, g� ·n=0, where n is the outward unit
normal vector of the surface. The dot product g� ·g� gives the
components g�� of a tensor, which is inverse to the metric tensor,
i.e., g��g��=��

�. The kinematic variables depend on the configu-
ration in which they are characterized. The position vector, sur-
face basis, contravariant basis, the components of the metric ten-
sor, and the inverse metric tensor on the stress-free reference
configuration C0�R3 �if such a configuration can be identified�
are denoted by X�P�, G�, G�, G��, and G��, respectively.

The surface deformation gradient, which maps the surface tan-
gent vectors at X�P� in C0 to the tangent vectors at x�P� in C, is

F = g� � G� �3�

The tensor F, regarded as a linear operator in 3D space, is singu-
lar. However, it can be understood as a nonsingular linear operator
on vectors lying in the tangent plane at X�P�. In this sense, the
inverse deformation gradient F−1 is

F−1 = G� � g� �4�

The Cauchy–Green deformation tensor associated with F is the
surface tensor at X�P� given by

C = FTF = g��G�
� G� �5�

2.2 Constitutive Equation. The constitutive equation of a
hyperelastic membrane is described by a strain energy function
�energy density per unit undeformed reference area�. The specific
form of the energy function can be established in several ways. If
the 3D strain energy function of the material is known, the surface
energy can be deduced by reduction. Alternatively, one can di-
rectly postulate a strain energy that depends on the surface defor-
mation gradient �16,17� and characterize the function form by
experiments or some other means. In this work, the second ap-
proach is followed. Starting from the assumption w=w�F�, the
invariant requirement under superposed rigid body motion further
requires that F enter the energy function through C. If the mem-
brane is isotropic, the material isotropy renders

w = w�I1,I2� �6�

where I1=tr C and I2=det C are the two principal invariants of
tensor C. In our work, it proves to be convenient to express the
invariants in tensorially invariant forms

I1 = g��G��, I2 =
g

G
�7�

where g and G are the determinants of the matrices �g��� and
�G���, respectively. The fundamental kinetic variable in the mem-
brane theory is the tension

t =�
−h/2

h/2

�dh = t��g� � g�, t�� = t�� � h��� �8�

where ��� are the components of the Cauchy stress tensor, and h
is the current thickness of the membrane. In the sequel, the ten-
sion tensor will also be referred to as the wall stress or simply
stress. Properly invariant stress function can be derived with the
aid of the referential resultant,

T = F−1�Jt�F−T, J =	 g

G
�9�

which corresponds to the second Piola–Kirchhoff stress S in the
3D theory. Since F−1g�=G�, as evidenced in Eq. �4�, it is clear
that T=Jt��G� � G�. Namely, the components T�� differ from t��

only by the area factor J. The standard argument involving the
balance of mechanical power concludes that

T = 2
�w

�C
= 2

�w

�g��

G� � G� �10�

It follows that in components T��=Jt��=2�w /�g��. For an iso-
tropic membrane, we have

Jt�� = 2
�w

�I1
G�� + 2I2

�w

�I2
g�� �11�

In the convected system, the principal invariants of the stress
tensor can be computed by

J1 = tr�t� = t��g��, J2 = det�t� = det�t���det�g��� �12�

Note that these expressions are invariant under the change of sur-
face coordinates.

2.3 Local Stress-Free Configuration. Thin membranes typi-
cally collapse when unloaded. They can have multiple stress-free
configurations, which may not attain a smooth convex shape. To
develop a theoretical framework suitable for parameter identifica-
tion, it is imperative to have a constitutive description that permits
a stressed configuration to be used as the reference. This can be
achieved using the notion of local stress-free configuration, which
associates each infinitesimal material element with a stress-free
configuration that can be reached independently of the surround-
ing material. The stress-free state of the material body is a virtual
configuration comprised of the union of the local configurations.
The energy function at each material point is characterized with
respect to the local stress-free state, whereas the deformation is
measured relative to the chosen reference configuration. In this
manner, the local stress-free configuration will enter the constitu-
tive law as model parameters. In what follows, we will show that
it can be effectively represented by a Riemannian metric tensor
endowed to the reference configuration. The essential idea of local
configuration was initially contained in Ref. �18� and further ex-
panded in Ref. �19�. This idea has been adapted, in different
forms, to describe material inhomogeneity �20,21�, finite plasticity
�22–25�, tissue growth �26,27�, residual stress �28,29�, and initial
strains �30�.

With reference to Fig. 1, let K−1 be the local deformation that
elastically releases the stress in an infinitesimal surface element at
point P and brings the material element to a local stress-free con-
figuration. The map K−1 is defined relative to a reference configu-
ration, which is not necessarily stress-free. With a slight abuse of
notation, this reference configuration is still denoted by C0, and
the associated kinematic variables are denoted by capital letters.
The local map K−1, regarded as a linear transformation on the
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tangent vectors at X�P��C0, can be determined if its action on
two linearly independent tangent vectors are known. If �G1d�1 ,
G2d�2� are the images of the line elements �G1d�1 ,G2d�2�, re-
spectively, we can write K−1 as

K−1 = G� � G� �13�

It should be noted that the tensor K−1 is not the gradient of a
global mapping. Moreover, since the local configuration is stress-
free, any arbitrary re-orientation remains stress-free, and thus the
local configuration K−1 is determined to within a left rotation.

Under the local relaxation, the line element dX=G�d�� is
mapped into K−1dX=G1d�1+G2d�2. The relaxed length is given
by

dS0
2 = �K−1dX� · �K−1dX� = dX · �K−TK−1�dX �14�

We can interpret the tensor

G ª K−TK−1 = G��G�
� G�, G�� = G� · G� �15�

as a Riemannian metric tensor on C0 that describes the unstressed
geometry of material elements. The metric tensor is a local prop-
erty of the reference configuration; it varies from point to point.
The rotation indeterminacy of the local configuration, which pre-
sents in K−1, is eliminated in the metric representation.

During a normal deformation C0�C, the tangent tensor to be
used in the constitutive equation is FK, where F is the regular
deformation gradient relative to the reference configuration C0.
Starting from w=w�FK�, the invariant requirement renders

w = w�KTFTFK� �16�

The rotational indeterminacy implies w=w�QKTFTFKQT� for
any rotation tensor Q. This condition dictates that the energy func-
tion depend on the principal invariants I1 and I2 of the tensor
�KTFTFK�. A straightforward computation shows

I1 = tr�KTFTFK� = g��G
��

�17�

I2 = det�KTFTFK� =
g

G
, G = det�G���

It is now clear that the local configuration enters the constitutive
equation through the components of the metric tensor G. This
representation is useful for parameter identification. In the case
where a global stress-free configuration cannot be attained experi-
mentally, the components G�� become unknown model param-
eters, which may be identified pointwise. The pointwisely deter-
mined metric may not satisfy the geometric compatibility
condition even if a globally compatible stress-free configuration
exists.

In closing, it is noted that, although rotational indeterminacy of
K−1 renders an isotropic function form, the constitutive approach
described here does not preclude anisotropic material. Anisotropic
properties can be introduced by the inclusion of appropriate struc-
tural tensors in the constitutive equation, as suggested by Boehler

in Ref. �31�. The ensuing function can be rendered covariant,
namely, invariant with respect to the reference frame, as discussed
in Ref. �32�.

3 Inverse Method of Stress Computation
The inverse elastostatic method is a family of methods for solv-

ing finite strain elasticity problems in which a deformed configu-
ration and the corresponding loads are given, while the unde-
formed configuration and the stress in the deformed state are
sought. The inverse problem can be formulated in several ways.
Govindjee and Mihalic �10,11� advocated the idea of solving the
inverse problem using the standard equilibrium boundary value
problem. Following this idea, the present authors’ group has de-
rived inverse finite element formulations for stress-resultant shells
and membranes �15,9�. The inverse method employed in this pa-
per addresses the following problem: given a deformed configu-
ration of a pressurized membrane and the corresponding pressure,
find the stress in the deformed configuration that satisfies the equi-
librium equation

1
	g

�	gt��g��,� + pn = 0 �18�

and appropriate boundary conditions. In Eq. �18�, g=det�g���, p is
the pressure, n is the unit normal vector of the surface, and � �,�
stands for the derivative with respect to the coordinate ��.

As alluded in Sec. 1, a pressurized membrane structure is stati-
cally determinate; the wall stress depends on the load and the
deformed geometry only, independent of the material property.
For a fully convex membrane with known deformed geometry,
Eq. �18� furnishes three partial differential equations that suffice
to determine the three components of the stress tensor in a Neu-
mann boundary value problem. In other words, the wall stress in a
Neumann problem is completely independent of material models.
If a membrane is completely or partially clamped, the boundary
constraints will compromise the static determinacy; however, the
influence of material behavior exists only in a thin boundary layer.
In regions sufficiently distanced from the displacement boundary,
the stress is asymptotic to the material-independent, static distri-
bution. This phenomenon has been discussed in several classical
papers on membrane mechanics, e.g., Refs. �33,34�. In this case,
the membrane structure is said to be effectively static determinate.

In the inverse approach �9�, the weak form is formulated di-
rectly on the given deformed configuration. The stress distribution
in the deformed state is determined by means of finding an inverse
motion under an assumed elasticity model. The stress-free con-
figuration so obtained corresponds to a kinematically compatible
configuration, which can be brought back to the starting deformed
configuration upon the application of the given load, under the
assumed material law. Although elasticity is introduced in the
computation, the stress solutions so obtained are expected to be
practically independent of the material parameters since the de-
formed configuration is given and utilized in the weak form at the
onset. In Ref. �9�, it has been demonstrated using a clamped sac
that the wall stress is indeed influenced minimally by the material
models chosen to perform the computation. Thus, the “static
stress” can be effectively predicted despite the introduction of
assumed elasticity models and the ignorance of realistic elasticity
parameters in the inverse approach.

The details of the inverse membrane element are presented in
Ref. �9�. Briefly, the finite element formulation starts with the
standard weak form,

F ª�
�

t��g� · �x,�da −�
��t

t · �xds −�
�

pn · �xda = 0

�19�

where � is the deformed membrane surface, ��t is the boundary
upon which the traction t is applied, and �x is any kinematically

Local stress-free
configurations C

K−1

C0

x

E1

E2

F

FK

X

E3

Fig. 1 Schematic illustration of the kinematic map
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admissible variation to the current configuration. In the finite ele-
ment space, the configurations and the variation are approximated
by

x = 

I=1

Nel

NI��1,�2�xI, X = 

I=1

Nel

NI��1,�2�XI, �x = 

I=1

Nel

NI��1,�2��xI

�20�

Here, the superscript I indicates the nodal number, Nel is the total
number of nodes in the element, NI��1 ,�2� is the shape function
for the Ith node, and the finite element natural coordinates ��1 ,�2�
serve as the convected surface coordinates.

Introducing the matrix forms of stress and strain variables, we
may write the finite element equation as

�
�

BTtda − fext = 0 �21�

where B is the strain-displacement matrix and fext is the external
nodal force vector. The explicit expressions for B and fext can be
found in Ref. �9�. In the inverse setting, the constitutive equation
�10� is regarded as a function of the referential metric tensor G��,
which in turn depends on the reference configuration via the rela-
tion G��= ��X /���� · ��X /����. The finite element method �FEM�
system, therefore, gives rise to a set of nonlinear algebraic equa-
tions for the nodal values of X. In our implementation, these
nonlinear equations are solved iteratively using the Newton–
Raphson procedure.

Several remarks on the inverse membrane method are as fol-
lows.

1. In the context of parameter identification, the inverse
method replaces the Laplace equation as the stress solver to
provide a static stress solution independent of the material
model to be characterized. The ability to compute the static
stress in general convex structures, albeit approximately, is
the cornerstone of the methodology. It substantially expands
the scope of early inflation tests.

2. The inverse method, however, has several limitations. The
method does not apply to membranes that have flat or con-
cave regions. If a membrane has a flat or nearly flat surface
area, the ensuing finite element system becomes ill condi-
tioned or even singular, reflecting the fact that a flat mem-
brane cannot sustain a transverse load. If the surface is con-
cave, equilibrium requirement may render compressive wall
stress, which should be ruled out by stability consideration.
Therefore, the inverse method is not a general method for
membrane problems. Rather, it should be applied with dis-
cretion.

3. The inverse solution may not converge if the material model
is not chosen properly. For example, if the material is too
compliant, the ensuing reference configuration may revert
the original surface curvature thus causing numerical diffi-
culty. Nevertheless, our experience indicated that stiffer ma-
terial models often lead to converged solution. Once the so-
lution converges, the stress depends minimally on the
material parameters.

4 Numerical Experiments
In PWIM, a membrane structure in its entirety will be mounted

to a test stand and inflated to several pressure levels. A mesh will
be drawn on the surface or a subregion of interest. The positions
of the nodes in each deformed configuration will be recorded by a
motion acquisition system to establish a deforming mesh that cor-
responds through all the deformed states. Stress and strain distri-
butions in each configuration will be computed independently.
The analysis consists of the following steps.

1. Computing the stress in each configuration individually us-
ing FEIEM.

2. Performing sensitivity analysis to identify regions where the
stress is insensitive to material models.

3. Computing the kinematic variables g��, g��, g�, and g� in
each configuration from the recorded surface deformation. If
the global stress free configuration is given, compute G��

and G�� from the reference geometry, and then compute the
strain invariants I1 and I2. If not, the reference metric tensor
will be left as three unknown parameters.

4. Examining the stress-strain property and selecting an appro-
priate energy function.

5. Obtaining the best fit material parameters at each selected
point by nonlinear regression. If the reference configuration
is unknown, estimate simultaneously the local metric tensor.

We simulated such an experiment using a numerical model. The
membrane structure, shown in Fig. 2, was considered. The mesh
was originally constructed from the images of a cerebral aneu-
rysm sac, which is convex but does not have any particular geo-
metric symmetries. We assumed that the wall was described by
the strain energy function

wA =
�1

2
�I1 − 2 log J − 2� +

�2

4
�I1 − 2�2 �22�

with

�1 = 0.06521739 N/mm, �2 = 0.1521739 N/mm �23�

This model is referred to as model A in the sequel. The parameters
�1 and �2 are the multiplication of 3D elasticity constants with
the wall thickness. Parameters like these are referred to as effec-
tive elasticity constants. To simulate the clamped boundary con-
straint typically used in experiments, we assumed that the base of
the sac was fixed. Eleven deformed configurations were computed
by applying pressures ranging from 60 mm Hg to 110 mm Hg
with an interval of 5 mm Hg. This was conducted using the �for-
ward� nonlinear membrane element in FEAP, a nonlinear finite
element program originally developed at the University of Cali-
fornia, Berkeley �35�. The maximum surface strain, which occurs
at 110 mm Hg pressure, is about 10%.

Subsequently, we took these generated deformed configurations
as input and applied PWIM to identify the elasticity parameters.
The stress distribution in each configuration was computed by the
inverse finite element method using a material model, which has
the same energy function as model A but ten times elevated ma-
terial constants. We also computed the stress using 100 times el-
evated parameters to assess the sensitivity of stress to material
parameters.

4.1 Strain Computation. Strain distributions in each con-
figuration were computed with the aid of the finite element inter-
polation �20�. Here, the surface inside an element is parametrized
by the finite element natural coordinates. From the finite element
interpolation �20�,

Fig. 2 Undeformed geometry and finite element mesh of the
membrane sac: „a… perspective view and „b… bottom view

061013-4 / Vol. 76, NOVEMBER 2009 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.45. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



g� = 

I=1

Nel
�NI

��� xI, g�� = 

I=1

Nel



I=J

Nel
�NI

���

�NJ

��� xI · xJ �24�

When the global stress-free reference configuration was given, the
quantities G�, etc., and subsequently the deformation tensor C
and its invariants I1 and I2 were computed accordingly.

4.2 Constitutive Regression. As seen in Eq. �11�, the stress
components are functions of the components of the reference and
the current metric tensors, and the elasticity parameters appearing
in the constitutive law. As described above, at every integration
point in each of deformed configurations, we can obtain the
stresses and at least the convected components g�� of the current
metric tensor. Choosing an appropriate constitutive model, we can
express the model stress as functions of the metric tensors and
elasticity constants. We denoted the model stress in the ith con-
figuration by

�i�t�� = t����, �i�g��,G��� �25�

where � stands for the set of elastic parameters. Let �i�t̂�� be the
“experimental” stress components obtained from the inverse
analysis. A logical objective or cost function, which represents the
difference between the modeled and observed responses, is

	 = 

i=1

N

��i�t�� − �i�t̂����i�g��
�i�g����i�t�� − �i�t̂��� �26�

where N is the total number of deformed states. In tensor notation,
	=
i=1

N ��i�t− �i�t̂�2. If the global stress-free configuration is given,
	 is a function of the material parameters only. Otherwise, 	
depends also on the local metric tensor components G��, which
will be included in the identification. This amounts to adding three
additional model parameters to the optimization problem at every
regression point. Since G is a metric tensor, it is natural to impose
the positiveness requirement. In this case, the regression problem
can be described as

minimize 	��,G���
subject to G11 
 0, G22 
 0, G11G22 − G12

2 
 0

and l � ��,G��� � u

�27�

Here, l and u are the lower and upper bounds of the regression
variables � and G��. The parameter identification was performed
by a gradient-based, sequential quadratic programming algorithm,
SNOPT �36�. As long as the constitutive model is selected, we can
compute the analytical gradients of the objective function 	 with
respect to the regression variables.

In order to validate the capability of the method, we fitted the
obtained stress-strain data to two constitutive models: one is the
same model as used in the process of generating the deformed

configurations �model A�, and the other is a distinct model �model
B�, which exhibits a similar mechanical behavior to that of model
A. Model B has the energy function

wB = �1�exp�I1 − 2 log J − 2� − 1� +
�2

4
�I1 − 2�2 �28�

where �1 and �2 are the effective elastic parameters. In the neigh-
borhood of �I1 , I2�= �2,1�, the two energy functions obviously
have similar characteristics. We performed parameter identifica-
tion under the assumptions of knowing the reference configuration
and without knowing the reference configuration. The stress func-
tions of both models and the stress gradients required by the op-
timization algorithm are recorded in the Appendix.

5 Results
The distribution of the principal stresses predicted from model

A at the highest pressure �p=110 mm Hg� is shown in Fig. 3.
Figure 4 shows the absolute percentage difference in the principal
stresses under drastic changes in elasticity parameters of model A.
The upper and lower rows show the percentage difference due to
the increase in both material parameters �1 and �2 by 10 times
and 100 times, respectively. Conservatively speaking, the change
in the principal stresses is less than 0.15% in the region two layers
of elements above the clamped base. In the region near the bound-
ary, the change in principal stresses is relatively large. However, it
is below 1%. This analysis allows us to identify the boundary-
effect-free regions, where parameter identification is to likely
yield reliable results. Later, the sac region excluding five layers of
elements from the base is designated as the identification zone.
The stress values computed from ten times elevated parameters
were used in the parameter regression.

Figure 5 shows the distribution of the identified elasticity pa-
rameters ��1 and �2� of model A, under the condition that the
global stress-free configuration is known. In this case, the original
mesh is taken to be the reference configuration C0 and the refer-
ential quantities G��, etc., are computed from this given geometry.
In the dome region �six layers above the boundary� shown in Fig.
5, the identified parameters �1 range from 0.06119 N/mm to
0.07010 N/mm, and �2 show a narrower range of 0.14986–
0.15410 N/mm. Since the stress is computed by FEIEM using a
model different from that in the forward computation �ten times of
the true elasticity parameters�, and hence the acquired stress is not
identical to the true stress, the identified parameters are expected
to deviate from their true values. The distribution of the identifi-
cation error �in percentage relative to the true parameters� by
knowing the reference metrics are illustrated in Fig. 6. As the
figures show, the identification error falls below 8% and 2% for
�1 and �2, respectively.

Figure 7 illustrates the distribution of the identified elasticity
parameters of model A without the assumption of known stress-

Fig. 3 The distribution of principal stresses in the membrane sac: „a… t1 and „b… t2
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free configuration. Figure 8 shows the identification error. In the
dome region, seven layers of elements away from the boundary,
the identified parameters �1 ranges from 0.05720 N/mm to
0.07872 N/mm, and �2 presents a narrower range of 0.14647–
0.15563 N/mm. The percentage error of the identified parameters
falls below 15% and 3% for �1 and �2, respectively. It is evident
that in both cases the constant �2, which is the leading parameter
in this model, is recovered to within a very small error. The iden-
tification of constant �1 is less accurate but is still within an
acceptable range.

Figure 9 shows the distribution of the identified elasticity pa-
rameters of model B, with the assumption of the stress-free con-
figuration being given. The distribution of the parameters shows
an approximate uniformity in the region, six layers of elements
away from the boundary. The ranges of the identified parameters
are 0.03052 N /mm��1�0.03492 N /mm and 0.14981 N /mm
��2�0.15407 N /mm. Figure 10 shows the distribution of the

identified elasticity parameters of model B, without assuming that
the stress-free configuration is given. The distribution of the pa-
rameters is approximately uniform in the region, seven layers of
elements above the boundary. The ranges of the identified param-
eters are 0.02778 N /mm��1�0.04037 N /mm and 0.14524 N
/mm��2�0.15555 N /mm. It is expected that the identified pa-
rameters span wider ranges for the case of stress-free configura-
tion being unknown due to the increase in the number of the
regression variables.

It is also informative to conduct a statistical analysis in the
boundary-effect-free region to examine how well the homogeneity
has been identified. Tables 1 and 2 list the means and standard
deviations of the identified elasticity parameters for both models
over the aforementioned boundary-effect-free regions for both
knowing and without knowing the local stress-free configurations.
For both models, adding the local reference metric tensor compo-
nents as three more regression variables generally renders larger

Fig. 4 The percentage difference in principal stresses under the change of elasticity parameters.
Upper row: increasing both parameters �1 and �2 by 10 times: „a… t1 and „b… t2; lower row: increasing
both parameters �1 and �2 by 100 times: „c… t1 and „d… t2.

Fig. 5 Identified elasticity parameters of model A knowing the reference metric: „a… �1 and „b… �2
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standard deviations of identified elasticity parameters. However,
the standard deviations of these data, especially those of �2 and
�2, are very small. Hence, we conclude quantitatively that the
material homogeneity is satisfactorily recovered.

Figure 11 illustrates the comparison between the stress invari-
ants modeled by model B and the “experimental” stress invariants
at a point where a relatively large principal stretch �
1=1.076�
occurs. The good match between these two curves suggests that
model B fits well the stress-strain data generated by model A. It
also provides an ad hoc justification for our choice of model B.

6 Discussions and Conclusion
Inspired by the property of static determinacy of the membrane

equilibrium problem, we devised a method of pointwise elastic
property identification for membranes. The key feature of the
method is the utility of FEIEM for the numerical solution of wall

stress. For pressurized convex membranes, FEIEM enables us to
practically determine the stress distribution using an assumed ma-
terial model without a priori knowledge of the realistic material
parameters. This in turn allows us to acquire the stress and strain
data independently and simultaneously at multiple points, and
thus to obtain the database necessary for the proposed pointwise
identification.

It is instructive to compare the method with commonly used
methods for characterizing thin materials, the experiment-based
specimen tests �37,38,8,39�, and the simulation based parameter
identification methods �40,41� such as the inverse finite element
method �42,43�. In the specimen tests, material samples are sub-
jected to load protocols designed to create in the specimen central
region an approximately uniform stress state, which can be deter-
mined from static equilibrium. The strain is obtained directly from
the deformation measurement. The elastic property is character-

Fig. 6 Absolute values of the relative error „in percentage… between identified elasticity parameters
and true parameters of model A knowing the reference metric: „a… �1 and „b… �2

Fig. 7 Identified elasticity parameters of model A without knowing the reference metric: „a… �1 and
„b… �2

Fig. 8 Absolute values of the relative error „in percentage… between identified elasticity parameters
and true parameters of model A without knowing the reference metric: „a… �1 and „b… �2
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ized directly from the stress and strain data. In contrast the param-
eters are not directly inferred from stress-strain response in
inverse finite element methods. These methods are designed for
applications where one does not have control over the load or
boundary data. Typically, a finite element model with yet un-
known parameters is developed for the tested subject. At a given
guess of material parameters, the response of the model is pre-
dicted. The predicted response, often displacements at selected
positions, is compared to the physical measurements; the differ-
ence is fed back to an optimization algorithm to adjust the param-
eters until a satisfactory agreement is achieved. A limitation of
these methods is that they cannot effectively deal with heteroge-
neous properties. It is practically impossible to obtain parameter
distribution from indirect regression.

The current method retains the spirit of direct stress-strain re-
gression. It utilizes pointwise stress and strain data acquired from
the inflation motion of membranes, as opposed to controlled ho-
mogeneous planar deformations. Consequently, the experiment
can be rendered nondestructive, and this is one of the distinct
features of the method. In comparison to the optimization based
approaches �40–43�, the present method decouples the stress so-
lution and the parameter regression. This separation not only ren-
ders a simpler computation structure but also leads to the possi-
bility of sharply delineating the property map in heterogeneous
membranes.

As the specimen test, the availability of direct stress-stain data-
base gives us the advantage of examining the stress-strain proper-
ties prior to parameter regression. This feature is valuable to the
determination of proper constitutive models for the material. For
example, one can examine the co-axial condition between stress
and strain to evaluate whether or not the material should be mod-
eled as isotropic �if the material is isotropic, the response satisfies
the universal relation SC=CS, see, e.g., Ref. �44��. The availabil-
ity of direct stress-strain data to support such a test puts the

method in an advantageous position over optimization based
methods. In the numerical experiments test conducted here, we
did not check the universal relations, since we started with an
isotropic energy function and the ensuing stress should satisfy the
universal relations to within numerical precision. We will address
this approach in the second part of the paper.

Owing to the application of fixed displacement boundary con-
dition and the utility of unrealistic elasticity parameters in FEIEM,
there is inevitably a thin boundary layer where the inverse stress
solution is not accurate. The boundary layer should be avoided in
parameter regression. The same issue exists for the specimen test
identification methods albeit in a different manner. The boundary
effect in the biaxial testing of planar tissues was studied experi-
mentally by Waldman et al. �45,46� and computationally by Sun et
al. �39�. They demonstrated that the gripping methods, e.g., sutur-
ing and clamping, or even the number of suture attachments have
significant influence over the stress field near the sample edges
and even the central region of the sample. This may lead to inac-
curate characterization of the material properties. The current
method has the advantage of being suture-free. Boundary effect
may be alleviated by using a larger mesh area or by employing
finer mesh near the boundary.

While the method presents a significant advance in parameter
identification, it has some inevitable limitations. First, grounded
on the static determinacy of membrane stress, the application is
limited to membrane structures. Moreover, the membrane struc-
tures must have convex shape in deformed states. An investigation
toward the extension to thin-walled shell structures of arbitrary
surface characteristics is undertaken in the authors’ group. We
believe that, in certain situations, the method can be used to iden-
tify the in-plane elastic properties of thin-shell structures. Second,
like the axisymmetric membrane inflation test, one does not have
a complete control over the deformation of the membrane to get a
desired deformation protocol, e.g., varying a principal strain while

Fig. 9 Identified elasticity parameters of model B knowing the reference metric: „a… �1 and „b… �2

Fig. 10 Identified elasticity parameters of model B without knowing the reference metric: „a… �1 „b… �2
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keeping the other fixed. This may limit the domain of response
space that one can examine. Nevertheless, for biological organs,
the elastic properties identified by this method may contain
enough information about the material behavior in its actual func-
tion because the identification is conducted using deformations
that closely mimic its motion in the service environment.

In conclusion, we described an innovative method that allows
for pointwise identification of local elastic properties in nonlinear
membranes and tested the method using numerical experiments.
We discussed the theoretical advantages and limitations of the
method. The most noteworthy attributes, we believe, are �1� the
nondestructive nature and �2� the capability of delineating dis-
tributive properties. While some limitations remain, the method

opens a new pathway of material parameter identification and
holds the promise of noninvasive identification for biological tis-
sues.
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Appendix: Stress Gradients
When using gradient-based optimization algorithms, one needs

to provide the analytical gradients of the objective function with
respect to the regression variables. Sections A1 and A2 present the
analytical gradients of the stress components with respect to the
material parameters and the metric tensor components of the
stress-free configuration for models A and B, respectively.

1 Model A. The convected components of the stress tensor
are derived as

t�� =
1

J
���1 + �2�I1 − 2��G�� − �1g��� �A1�

In Eq. �A1�, we replace G�� with G�� if the stress-free configu-
ration is unknown, for the purpose of consistency with the nota-
tion in Sec. 2.3.

The stress gradients are defined as the partial derivatives of the
stress components t�� with respect to the regression variables. The
stress gradients with respect to the elasticity parameters, �1 and
�2, respectively, are

�t��

��1
= I2

−1/2�G�� − g��� �A2�

�t��

��2
= I2

−1/2�I1 − 2�G�� �A3�

If the stress-free configuration is unknown, the stress gradients
with respect to the contravariant reference metric tensor compo-
nents G�� are

�t��

�G11 = −
1

2
I2

−3/2gG22��G�� − �1g��� + I2
−1/2��

�G��

�G11 + �2g11G
��


�A4�

�t��

�G22 = −
1

2
I2

−3/2gG11��G�� − �1g��� + I2
−1/2��

�G��

�G22 + �2g22G
��


�A5�

�t��

�G12 = I2
−3/2gG12��G�� − �1g��� + I2

−1/2��
�G��

�G12 + 2�2g12G
��

�A6�

where �=�1+�2�I1−2� and g=det�g���.

2 Model B. The convected stress components of this model
are

t�� =
1

J
�2�1 exp�I1 − 2 log J − 2��G�� − g��� + �2�I1 − 2�G���

�A7�

Likewise, G�� will be replaced by G�� if the stress-free configu-
ration is unknown. The stress gradients with respect to the elas-
ticity parameters are given by

�t��

��1
= 2I2

−1/2��G�� − g��� �A8�

Table 1 The means and standard deviations of identified elas-
ticity parameters of model A and model B knowing the refer-
ence metric tensor

Model A Model B

�1 �2 �1 �2

Mean �N/mm� 0.06516 0.15208 0.03239 0.15206
SD �N/mm� 0.00113 0.00061 0.00057 0.00061

Table 2 The means and standard deviations of identified elas-
ticity parameters of model A and model B without knowing the
reference metric tensor

Model A Model B

�1 �2 �1 �2

Mean �N/mm� 0.06484 0.15218 0.03132 0.15257
SD �N/mm� 0.00328 0.00143 0.00200 0.00168
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Fig. 11 Comparison between the “experimental” stress invari-
ants and the predictions of model B: „a… J1 and „b… J2
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�t��

��2
= I2

−1/2�I1 − 2�G�� �A9�

The stress gradients with respect to the unknown contravariant
metric tensor components of the stress-free configuration are

�t��

�G11 = −
1

2
I2

−3/2gG22��2�1� + �2��G�� − 2�1�g���

+ I2
−1/2�2�1��g11 − I2

−1gG22���G�� − g���

+ I2
−1/2��2g11G

�� + �2�1� + �2��
�G��

�G11 � �A10�

�t��

�G22 = −
1

2
I2

−3/2gG11��2�1� + �2��G�� − 2�1�g���

+ I2
−1/2�2�1��g22 − I2

−1gG11���G�� − g���

+ I2
−1/2��2g22G

�� + �2�1� + �2��
�G��

�G22 � �A11�

�t��

�G12 = I2
−3/2gG12��2�1� + �2��G�� − 2�1�g���

+ I2
−1/2�4�1��g12 + I2

−1gG12���G�� − g���

+ I2
−1/2�2�2g12G

�� + �2�1� + �2��
�G��

�G12 � �A12�

where �=eI1−2logJ−2 and �= I1−2.
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Pointwise Identification of Elastic
Properties in Nonlinear
Hyperelastic Membranes—Part
II: Experimental Validation
Following the theoretical and computational developments of the pointwise membrane
identification method reported in the first part of this paper, we perform a finite inflation
test on a rubber balloon to validate the method. The balloon is inflated using a series of
pressurized configurations, and a surface mesh that corresponds through all the deformed
states is derived using a camera-based three dimensional reconstruction technique. In
each configuration, the wall tension is computed by the finite element inverse elastostatic
method, and the in-plane stretch relative to a slightly pressurized configuration is com-
puted with the aid of finite element interpolation. Based on the stress-strain characteris-
tics, the Ogden model is employed to describe the material behavior. The elastic param-
eters at every Gauss point in a selected region are identified simultaneously. To verify the
predictive capability of the identified material model, the deformation under a prescribed
pressure is predicted using the finite element method and is compared with the physical
measurement. The experiment shows that the method can effectively delineate the dis-
tributive elastic properties in the balloon wall. �DOI: 10.1115/1.3130810�

Keywords: parameter identification, finite inflation test, nonlinear membrane, inverse
method, inverse elastostatics

1 Introduction
In the first paper �1� of this series, we introduced a new experi-

mental method, the pointwise identification method �PWIM�, for
characterizing the distributive elastic properties in hyperelastic
membranes. The method is a nontrivial generalization of the finite
inflation test by Rivlin and Saunders �2�. The original inflation test
was limited to axisymmetric membrane structures; in our devel-
opment it is extended to general convex membranes without any
geometric symmetry. The cornerstone of PWIM is a nonconven-
tional approach of stress analysis, the finite element inverse elas-
tostatic method �3–8�. This method takes as the input a deformed
configuration of an elastic material body and the corresponding
load, and determines the stress distribution by way of finding a
stress-free configuration. For finitely deforming membranes, the
inverse method can effectively compute the wall stress without
knowing the realistic material constitutive equation �7,8�. This
capability enables us to collect stress data independently of the
material in question. With the availability of stress and strain dis-
tributions in several deformed states, the local elastic property of
the wall can be characterized pointwise at multiple material
points. In Ref. �1�, we tested this paradigm numerically using a
membrane of known material behavior.

In this work, we validate the method through finite inflation
tests on a rubber balloon. PWIM has several attributes that are not
shared by conventional parameter identification methods. The
most noteworthy characteristic, in our opinion, is the capability of
delineating the property map, namely, the parameter distributions.
This capability is highly desirable in characterizing heterogeneous
properties such as in soft tissues. Although admittedly the concept
of pointwise identification is best tested with heterogeneous ma-

terials; in this paper we focus on a rubber balloon known to be
approximately homogeneous. Our emphasis, in part, is placed on
verifying the capability of detecting the uniform property distri-
bution of a homogenous material. Further validation with hetero-
geneous materials will be the subject of a forthcoming paper.

2 Method

2.1 Photogrammetric Surface Reconstruction. Photogram-
metry encompasses methods of image interpretation in order to
derive the shape and location of an object from one or more pho-
tographs of that object �9�. A primary purpose of photogrammetric
measurement is the three-dimensional reconstruction of an object
in digital form. Photogrammetry works as follows. First, the cam-
era needs to be calibrated, which allows the photogrammetry pro-
gram to know the detailed description of the camera, including the
focal length, imaging scale, image center, and lens distortion. Sec-
ond, the user takes enough photographs of the object from differ-
ent perspectives, which can sufficiently characterize its 3D struc-
ture. Third, the photographs are imported into the program, and
point referencing is then performed to let the program know the
corresponding positions in each 2D image space of a point in the
3D space. Finally, the 3D position of all the selected points are
computed using mathematical transformation. If applied to a de-
forming membrane with enough tracking markers on its surface,
which sufficiently characterize the geometry feature of membrane,
photogrammetry can be used to record the 3D positions of the
tracking markers in different deformed states. By identifying a
reference configuration, one can obtain the displacements of the
tracking markers and hence compute the strains using interpola-
tion.

2.2 Experiments. A finite element mesh, which constitutes
12�12 four-node elements, was drawn by hand using a fine
marker pen on the belly region of the balloon surface. Com-
pressed nitrogen gas was used to inflate the balloon. Before test-
ing, the rubber balloon underwent cyclical inflation-deflation �pre-
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conditioning� for ten times to eliminate Mullin’s effect.
Subsequently, the balloon was inflated to a relatively large size of
approximately 200% stretch. After several seconds of waiting for
the balloon to reach its stable status, the balloon was deflated in
several decrements. At each state, the air pressure inside the bal-
loon was measured by a manometer. In the meantime, four photos
were taken from different perspectives using a Nikon D80 digital
SLR camera, which was calibrated prior to the test. Since the
balloon generally collapses when the net internal pressure is zero,
the configuration under a very small pressure �0.0001 N /mm2�,
but still in convex shape, was taken as the approximate stress-free
configuration. Fourteen configurations, including the stress-free
configuration and thirteen deformed configurations, were
recorded.

Taking the photos as input, we used a close-range photogram-
metry program, PHOTOMODELER 6 �EOS Systems Inc.� to recon-
struct the 3D surface geometry of the meshed region in each con-
figuration. In the process of 3D geometry reconstruction, an
important step is the determination of the point-to-point corre-
spondence between the tracking points in different photographs.
Due to the difficulty of corresponding the nodes across different
photographs automatically, we determined the point-to-point cor-
respondence by manually picking the points.

2.3 Stress Computation. Taking the reconstructed finite ele-
ment mesh of each deformed configuration, we computed indi-
vidually the wall tension using the membrane finite element in-
verse elastostatic method �7,8�. The inverse method leverages the
material insensitivity of the stress in membrane structures. It en-
ables us to compute the wall stress using assumed material models
�7,1�. In this work, we employed a neo-Hookean type of hyper-
elastic constitutive model whose strain-energy function is

wneo-Hookean =
�1

2
�I1 − 2 log J − 2� +

�2

4
�I1 − 2�2 �1�

Here, I1=tr�C� and J=�det�C�, where C is the right Cauchy–
Green deformation tensor, and ��1 ,�2� are the effective elastic
parameters as defined in Part I of the paper. Without the second
term, the energy function corresponds to the classical neo-
Hookean material, which is known to suffer a limit-point instabil-
ity during inflation motions �10�. The second term is introduced as
a remedy to stabilize the deformation. For the sake of quick con-
vergence, unrealistic values of the elasticity parameters, �1=�2
=100 N /mm, which rendered a very small deformation, were
assumed.

Clamped boundary conditions were applied on the four edges
of the mesh. As discussed in Refs. �1,7�, clamped boundary �or
other types of displacement constraints� compromises the static
determinacy. However, for sufficiently curved membranes the in-
fluence exists in a thin boundary layer �11,12�, and the thickness
of which depends inversely on the surface curvature. Outside the
boundary layer, the stress is asymptotic to the material-
independent static solution. We hypothesize that the boundary
layer can be identified numerically by examining the change of
stress under varying material parameters. The region in which the
stress remains approximately invariant under relatively large
change of material parameters is defined as the boundary-effect-
free region. Later, the parameter identification will be carried out
in the boundary-effect-free region only. This procedure is impor-
tant to the experiment design, as we need a practical method to
identify, and thus to avoid, the boundary layer.

As in the first part, the �Cauchy� tension tensor t and the refer-
ential tension tensor T are the resultants of the Cauchy stress �
and the second Piola–Kirchhoff stress S, respectively,

t = h�, T = HS �2�

Here, h and H are the current and initial membrane thicknesses,
which are related to h=�3H, where �3 is the thickness stretch.
Relative to a convected basis, the tension tensors have the form

t = t��g� � g�, T = T��G� � G� �3�

The current basis g� is related to the reference basis G� pointwise
through the relation g�=FG�, where F is the deformation gradi-
ent. It follows that the components of the tension and the referen-
tial tension differ only by the area stretch factor J, i.e., T��

=Jt��.
In the inverse computation, the tension t is computed at each

Gauss point in a local orthonormal coordinate system, and thus
the outputs are the physical components, which we denoted as t11,
t22, and t12= t21. The principal tensions, which will be used in
parameter regression, can be directly computed according to

t1 =
t11 + t22

2
+

��t11 − t22�2 + 4t12
2

2
�4�

t2 =
t11 + t22

2
−

��t11 − t22�2 + 4t12
2

2

However, the basis vectors defined independently in each con-
figuration do not form a convected basis. The convected compo-
nents of the stress can be computed through a linear transforma-
tion. Let �g� ,�=1,2� be a set of basis vectors at a point, and let
�g� ,�=1,2� be the convected basis at the same point �the com-
putation of the convected basis is discussed in Sec. 2.4�. The
tension tensor t can be written, in terms of the two sets of basis, as

t��g� � g� = t̄��g� � g� �5�

Taking the dot product of both sides of Eq. �5� with g� � g�, and
letting Q�

�=g� ·g�, we obtain

t�� = Q�
�t̄��Q�

� �6�

2.4 Strain Computation. Based on the measured nodal posi-
tions in the reference and deformed configurations, we approxi-
mated the position vectors of a point inside the meshed region via
the finite element interpolation,

X = �
I=1

Nel

NI��1,�2�XI, x = �
I=1

Nel

NI��1,�2�xI �7�

Here, the superscript I is the indicator of the nodal number, Nel is
the total number of nodes in the element, and NI is the shape
function for the Ith node. The natural coordinates ��1 ,�2� serve as
the �elementwise� convected surface coordinates. The displace-
ment field is u=x−X. It follows that the covariant basis vectors of
the reference and current configuration are computed, respec-
tively, as

G� =
�X

��� = �
I=1

Nel
�NI

��� XI, g� =
�x

��� = �
I=1

Nel
�NI

��� xI �8�

The components of the covariant metric tensors on the reference
and current surface, respectively, are given by

G�� = G� · G�, g�� = g� · g� �9�

Other geometric entities such as the contravariant basis vectors
�g� and G�� and the contravariant metric tensor components �g��

and G��� are computed in the standard manner, see Ref. �1�. Sub-
sequently, the deformation gradient F and the right Cauchy–Green
deformation tensor C=FTF are computed at every Gauss point. As
presented in Ref. �1�, the deformation gradient F=g� � G� and
C=g��G� � G�. In our implementation, a local orthonormal basis
was constructed at every Gauss point in the reference configura-
tion, rendering G��=��� and G��=���. The components of C
with respect to this basis are the physical components.

The principal stretches �1 and �2 of the membrane are defined
as the eigenvalues of the right stretch tensor U, which is related to
the right Cauchy–Green deformation tensor C through C=U2.
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Thus, the square stretches �1
2 and �2

2 are the eigenvalues of C,
which are given, in terms of the physical components of C, by

�1
2 =

C11 + C22

2
+

��C11 − C22�2 + 4C12
2

2
�10�

�2
2 =

C11 + C22

2
−

��C11 − C22�2 + 4C12
2

2

2.5 Isotropy Test. For materials in some symmetry classes,
the stress function should satisfy certain universal relations
�13–17�. For experimentalists, the universal relations are impor-
tant in determining whether a material belongs to a certain sym-
metry class. For isotropic elastic materials, the relation

SC = CS �11�

holds, which implies that the second Piola–Kirchhoff stress tensor
S commutes with the right Cauchy–Green deformation tensor C in
every possible motion. Giving the linear relation between S and
referential tension T, it is clear that T must satisfy

TC = CT �12�
This is the universal relation for isotropic membranes.

Utilizing the acquired tension-strain data, we may examine
whether TC=CT holds. Due to the experimental error, TC-CT
will not be exactly zero even if the material is truly isotropic. We
employ the commutator e=TC-CT as an isotropy indicator. Due
to the symmetry of T and C, the components e11=e22=0, and the
only possible nonzero component is e12. We introduce the func-
tion 	=2	e12	 /��TC� : �CT� as a measure of coaxiality. If 	 is
close to zero for a wide range of stress-strain protocols, we may
say the universal relation is satisfied. Obviously, the test alone
cannot conclude material isotropy, especially if only limited
stress-strain protocols are tested. However, if the universal rela-
tion is found to hold true for a rich family of stress-strain proto-
cols, then there is a strong justification to model the material as
isotropic.

2.6 Elastic Parameter Identification. The mechanics of rub-
ber elasticity was investigated extensively in the past several de-
cades, and various constitutive models were developed. Among
the well-known hyperelastic descriptors, there are mainly two
types of energy functions, one in terms of the strain invariants
�18,19� and the other in principal stretches �20–23�. Attributing to
the limited extensibility of the molecule chain network, the stress-
stretch curve shows a characteristic sigmoid shape �24�. Our ex-
perimental stress-stretch data displayed the same characteristic as
that by Treloar �20�. It was well accepted that Ogden’s energy
function �22�, which contains noninteger powers of the principal
stretches, can model the sigmoid shape well within the typical
range of experimental stretches. Based on this consideration, we
selected the Ogden model to fit our experimental data.

The Ogden model describes the strain-energy function in terms
of the principal stretches �r �r=1,2 ,3� in the following form:

W = �
i

Mi

�i
��1

�i + �2
�i + �3

�i − 3� �13�

Here, W is the strain energy per unit reference volume, and Mi and
�i are the elastic parameters. The exponents �i may take any
nonzero real value. The summation on i extends over as many
terms as are necessary to characterize a particular material �25�.
For membranes, the strain energy per unit reference area is w
=HW, where H is the reference membrane thickness. Hence, the
2D form of Eq. �13� is

w = �
i

HMi

�i
��1

�i + �2
�i + �3

�i − 3� �14�

We introduce the effective elasticity parameters 
i=HMi and re-
write Eq. �14� as

w = �
i


i

�i
��1

�i + �2
�i + �3

�i − 3� �15�

The incompressibility condition �1�2�3=1 gives rise to �3
= ��1�2�−1. Considering that �1 and �2 are two independent defor-
mation parameters, we may rewrite function �15� as

ŵ��1,�2� = �
i


i

�i
��1

�i + �2
�i + �1

−�i�2
−�i − 3� �16�

It follows that under the plane stress assumption �t3=0�, the prin-
cipal values of the tension tensor are given by

t1 =
1

�2

�ŵ

��1
, t2 =

1

�1

�ŵ

��2
�17�

Expanding Eq. �17�, we obtain

t1 = �
i


i��1
�i−1�2

−1 − ��1�2�−�i−1�

�18�
t2 = �

i


i��2
�i−1�1

−1 − ��1�2�−�i−1�

It was shown by Ogden �22� that the energy function �15� fits well
with the data of a particular rubber material by Treloar �20� if
three terms are included. Following this observation, we chose the
three-term Ogden model in this work.

The objective function is constructed as

� = �
i=1

N

w1��i�t1 − �i�t̂1�2 + w2��i�t2 − �i�t̂2�2 �19�

where N is the number of deformed states recruited into the re-
gression, �i�t� and �i�t̂� ��=1,2� are the predicted and experimen-
tal principal tension models �computed from the inverse method�
in the ith configuration, and w1 and w2 are the weight parameters,
the values of which are determined by numerical experiments. To
achieve the reported results, we chose w1=1.0 and w2=1.5. Since
an approximate global stress-free configuration was obtained, � is
a function of the unknown elasticity parameters only. The param-
eter identification problem can be described as

minimize ���,�� subject to l � ��,�� � u �20�

Here, �� ,��= �
1 ,
2 ,
3 ,�1 ,�2 ,�3� is the vector of elasticity pa-
rameters, and u are the vectors of lower and upper bounds of
�� ,��.

A practical difficulty in material parameter identification is that
multiple sets of parameters may render equally good fits to a
given set of stress-strain data due to the presence of local minima
or experimental error or regression error �26�. The problem aggra-
vates for highly nonlinear models, as small perturbation in the
experimental data may result in a large variation in the ensuing
parameters. This issue has a nontrivial implication in membrane
identifications. While the 3D energy function parameters are in-
trinsic properties of the material, the effective properties in the
membrane energy function, such as 
i in Eq. �15�, are not. Their
values depend on the wall thickness, and thus may vary with the
thickness even if the underlying material is intrinsically homoge-
neous. Due to the numerical nonuniqueness in fitting, a variation
in the wall thickness may result in a spurious heterogeneity in the
identified intrinsic parameters. To cope with this difficulty, we
adopted the following strategy. We first performed regression at a
selected point where the response was relatively smooth and de-
termined the parameters �i and 
i. Then, based on the consider-
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ation that the balloon is approximately homogeneous, we applied
the values of �i to all other points and identified the remaining
effective parameters 
i. Although the parameters so obtained are
unlikely the global minimizer of the objective function, the �as-
sumed� intrinsic homogeneity is enforced. The regression was per-
formed by a gradient-based, sequential quadratic programming
�SQP� algorithm, SNOPT �27�.

2.7 Predictive Capability. The usefulness of the identified
elastic parameters can be evaluated by examining how well the
model derived from a set of experiments can predict the system
behavior in a different physical setting �28�. We conducted a for-
ward finite element analysis using the identified material model to
predict a deformed configuration, which was not used in the pa-
rameter identification. The FEM predictions were compared with
the measured deformation. In the forward analysis, we followed
the finite element formulation of the Ogden model for membrane
problems presented by Gruttmann and Taylor �25� and imple-
mented the element in the nonlinear finite element analysis pro-
gram �FEAP� �29�.

The forward finite element analysis was conducted for the
boundary-effect-free region where the parameter identification
was carried out. The displacements of the boundary nodes were
prescribed according to the recorded nodal positions. The differ-
ence between the predicted position x and measured position x̂
was quantified nodewise with the error measure e= 
x− x̂
 /L,
where L is a characteristic length taken to be 50 mm.

3 Results

3.1 Reconstructed Surfaces and Stress Results. Table 1 lists
the 13 deformed configurations and their corresponding pressure
values. The largest stretch being around 2.1 occurred in the de-
formed configuration 13 �the highest pressure�. The initial size of
a randomly selected element in the stress-free configuration is
about 5.3�5.3 mm2, whereas in the deformed configuration 13,
its size is around 10.6�10.6 mm2. Figure 1 shows a typical
photo used in the process of 3D geometry reconstruction. Figure 2
shows the reconstructed mesh for the deformed configurations.
Two deformed configurations, which were close to other ones, are
not shown. Qualitatively, the convexity and smoothness of mem-
brane surfaces were recovered.

Figure 3 shows the finite element mesh and the principal ten-
sions in the 13th state �the highest pressure�. It should be noted
that the stress solution obtained through the inverse method is
largely affected by the geometric features of the surface, e.g.,

smoothness and curvature. Due to the unavoidable existence of
experimental error, the reconstructed membrane surface may have
some unphysical local undulations depending on the accuracy of
the motion tracking devices. In that case, the stress solution may
not converge or has stress concentrations here and there. In order
to reduce this artifact, it is imperative that certain surface smooth-
ing processes be conducted prior to stress computation. In this
work, we were able to obtain good quality surface meshes from
3D reconstruction without modification for all of the configura-
tions.

3.2 Stress Sensitivity to Material Model. Figure 4 shows the
relative difference �in percentage� of the principal tensions under
drastic changes in elasticity parameters of the neo-Hookean
model. We took the parameters �1=�2=100 N /mm as the refer-
ence values. After varying the two parameters in different ways,
we computed the principal tensions using the inverse method and
compared them to those computed from the reference parameters.
In Fig. 4, the upper row shows the percentage difference in prin-
cipal stresses when both parameters were magnified ten times, i.e.,
�1=�2=1000 N /mm. The percentage differences in region 3 lay-
ers of elements distanced from the boundary were below 0.05%.
Increasing both parameters by 100 times produces a similar dif-
ference margin, and we did not report it here. In the lower row, �1
was kept unchanged, while �2 was increased to five times, i.e.,
�1=100 N /mm and �2=500 N /mm. The percentage differences
in region 3 layers of elements distanced from the boundary were
below 2.8%. The case where �1 was increased to five times while
�2 remained unchanged was also considered and a similar margin
of difference was observed.

Throughout all the tests, it appears that the tension solution was
affected minimally by proportional variations of the elastic param-
eters. Changing two parameters unproportionally, however, ren-
dered a relatively larger variation in the tension solution. Never-
theless, the difference was within an acceptable range in region 3
layers of elements distanced from the boundary. This region was
identified as the boundary-effect-free region where the parameter
identification was performed later.

3.3 Isotropy Test. Figures 5�a� and 5�b� show the distribution
of the coaxiality indicator 	 in the lowest and highest pressure
states �configurations 1 and 13�, respectively. In the boundary-
effect-free region defined above, the value of 	 was less than
0.58% and 1.07% for configurations 1 and 13, respectively. The
values in other states fall into these limits. Allowing for the ex-
perimental error, we conclude that the coaxiality condition be-
tween the stress and strain tensors was met. Therefore, the mate-
rial may be modeled as isotropic.

Table 1 The identities and corresponding pressure values of the deformed configurations

Configuration ID 1 2 3 4 5 6 7 8 9 10 11 12 13
Pressure �N /mm2� 0.00089 0.00134 0.00153 0.00161 0.00167 0.00173 0.00179 0.00184 0.00190 0.00198 0.00208 0.0022 0.00238

Fig. 1 A photo of the rubber balloon used in the process of 3D
geometry reconstruction Fig. 2 Reconstructed meshes of the deformed configurations
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3.4 Elastic Parameter Identification. As introduced in Sec.
2.6, the parameter identification was accomplished in two steps.
First, the regression was performed at a selected Gauss point and
all parameters were identified. Second, the identified �i values
were applied to the entire region, and the remaining parameters 
i
were identified at all remaining Gauss points. The identified val-
ues of �i and 
i at the selected point are listed in Table 2.

The global regression was performed using the states in Table 1
excluding the 11th state �p=0.00208 N /mm2�, which was re-
served for a forward verification. The distributions of the identi-
fied parameters 
i in the whole region are shown in Fig. 6 for the
boundary-effect-free region. The ranges, means, and standard de-
viations of these three parameters are listed in Table 3. Since the
standard deviations for all the parameters are relatively small, we
may conclude that the material is at least nominally homogeneous.

The intrinsical homogeneity of the material can be checked by
inspecting the ratios 
1 /
2, 
1 /
3, and 
3 /
2, which factor out

the wall thickness. Since 
3 is several orders of magnitude
smaller than 
1 and 
2, we only examine the ratio of 
1 to 
2.
The distribution of this ratio is illustrated in Fig. 7. Qualitatively
seen from the figure, the ratio is approximately uniform over the
region. The mean is 3.0309 N/mm, and the standard deviation is
0.1720 N/mm. The result suggests that the intrinsic properties are
effectively homogeneous.

Figure 8 illustrates the comparison between the identified mod-
el’s tension-stretch curves and the experimental data at the point
where the initial identification of all six parameters took place.
The good match between the model predictions and experimental
data indicates that the material’s response were modeled success-
fully by the Ogden model, at least within the stretch range con-
sidered in the experiment.

3.5 Predictive Capability. The 11th configuration �p
=0.00208 N /mm2�, which was excluded from parameter identi-

Fig. 3 Distribution of principal tensions in deformed configuration 13: „a… t1 and „b… t2

Fig. 4 The percentage difference of principal tensions under the change of elasticity parameters.
Upper row: increasing both parameters �1 and �2 to ten times, „a… t1 and „b… t2; lower row: keeping �1
unchanged and increasing �2 to five times, „c… t1 and „d… t2.
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fication, was recruited for a forward verification. Figure 9 shows
the comparison between the finite element predicted configuration
using the identified mean elastic parameters and the experimen-
tally measured configuration. In the left plot, the thick black mesh
is the finite element prediction, and the thin gray mesh is the
experimental result. The finite element analysis was performed for
the boundary-effect-free region where the elastic parameter iden-
tification was conducted. Displacement boundary conditions cor-

responding to the measured nodal positions were applied along
the boundary edges. The right plot shows the distribution of the
relative error between the predicted and measured nodal positions.
As shown in the plots, the computed configuration coincides very
well with the experimentally measured one. The position error e
= 
x− x̂
 /L is less than 0.2% throughout the region.

4 Discussion and Conclusion

4.1 Advantages and Speculations. The experimental method
is designed for delineating the distributive elastic properties in
membrane structures. Unlike the traditional specimen tests, which
rely on controlled homogeneous deformations, the present method
does not require the uniformity of stress and strain in the allow-
able protocol. Instead, the actual stress and strain generated during
a finite inflation motion of a membrane are employed to charac-
terize the distributive properties. To the best knowledge of the
authors, this paradigm of parameter identification was not fully

Fig. 5 The distribution of the coaxiality indicator ε „in percentage… in selected configurations: „a…
configuration 1 and „b… configuration 13. Both figures were scaled to fit the canvas for clarity.

Table 2 The identified parameters �i and �i for the Ogden
model at a selected point

i �i


i
�N/mm�

1 2.87181 0.05827
2 
1.80776 0.01940
3 
5.76831 −8.477�10−5

Fig. 6 Identified elasticity parameters of the Ogden model: „a… �1, „b… �2, and „c… �3
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explored in the literature. In this paper, we verified experimentally
that the method can effectively identify the membrane property
and can recover the uniformity of parameters in a known homo-
geneous rubber balloon. The true value of the method, of course,
lies in the potential of delineating the heterogeneous property dis-
tribution. So far, there is no effective experimental method that
can sharply characterize heterogeneous materials.

In theory, the method is also applicable to anisotropic material.
It was demonstrated by Lu et al. �7� for anisotropic materials that
the stress solution through the inverse method is also independent
of constitutive models and model parameters. However, since an-
isotropic models contain a symmetry descriptor, which for thin
materials is often related to the fiber orientation, the task of prop-
erty characterization can be much more challenging. In particular,
it is unclear whether the symmetry descriptor can be effectively
identified from inflation data alone without knowledge of the un-
derlying fiber structure. Research in this direction remains open.

Another noteworthy feature of the method is its nondestructive-
ness. Due to the elimination of edge force measurement, the mem-
brane does not need to be cut into pieces. The structure in its
entirety is tested. This experimental approach provides a frame-
work for designing noninvasive identification methods for thin
biological tissues. When augmented with a suitable method for
deformation data acquisition, the method may even lead to a non-
invasive approach for extracting the in vivo elastic properties of
thin living organs.

4.2 Accuracy Issues and Solutions. The accuracy of the
method depends critically on the quality of stress and strain data.
The former, in turn, is highly sensitive to the surface curvature
and thus may be strongly influenced by the inaccurate character-
ization of the surface geometry. In the present work, a major
source of error is the manual node picking. In order to reduce this
error, we picked specific corners at the intersection of two lines
since it was much easier to determine the position of a sharp
corner. The ensuing surface quality for all configurations appeared
to be acceptable. If a reconstructed surface has spurious local
undulations, it may be necessary to smooth the surface prior to
stress computation. Since the strain is computed from the nodal
positions via interpolation, its quality is also affected by the afore-
mentioned error. However, the influence on strain accuracy is
lesser.

The issue of accuracy can be addressed from several avenues.
The first possibility is to use accurate surface data acquisition
techniques such as laser scan. Commercial laser scanners can re-
construct solid surfaces to within submicron accuracy. The scan-
ners often output triangulated surface or computer-aided design
�CAD� models that can be readily meshed. Second, within the
present setting one may increase the mesh density by drawing
more nodes on the surface. A finer mesh will capture the surface
curvature better and produce more accurate stress results. As a
by-product, it will also help sharpening the numerically identified
boundary layer. Alternatively, one may use high order elements or
other intrinsically smooth approximation methods, such as the
meshfree methods �30,31� or the isogeometric method �32�. These
methods are more accurate in geometric description, which in turn
render more accurate stress solutions.

4.3 Limitations. As discussed in the first part of the paper,
the major limitation of this method is that it applies only to thin
structures. Strictly speaking, the static determinacy is a property
unique to membrane equilibrium, although in some situations the
in-plane stress in a shell structure can also be independent of
material properties. Hence, this method is limited to membranes
and some shell structures.

To some extent, the nondestructiveness of the method limits the
range of deformation protocols that one can explore. For instance,
one cannot change a principal stretch while maintaining the other
one fixed. In this aspect, the individual role of the principal
stretches cannot be fully explored. In this regard, the protocols
belong to a somewhat restricted subspace in the response surface.
The identified material parameters may not accurately reproduce
other types of response such as uniaxial tension.

4.4 Concluding Remarks. We conducted experimental vali-
dations for the pointwise identification method. We showed that
the method can effectively identify the distributions of the elastic
parameters of a rubber balloon and can reasonably recover the

Table 3 Ranges, means, and standard deviations of the iden-
tified elasticity parameters


1 
2 
3

Minimum �N/mm� 0.05470 0.01473 −9.454�10−5

Maximum �N/mm� 0.06453 0.02320 −6.221�10−5

Mean �N/mm� 0.05986 0.01966 −8.154�10−5

SD �N/mm� 0.00239 0.00171 6.923�10−6

Fig. 7 Distribution of the ratio of �1 to �2
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Fig. 8 Comparison between the experimental and the identi-
fied tension curves: „a… t1 and „b… t2
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uniform distribution of properties known to be homogeneous. The
derived model can accurately predict the inflation motion at a
different pressure. The success of this validation inspires us to
further the work, in particular, to validate the method against more
complicated constitutive models. The application to heteroge-
neous materials will be the subject of a forthcoming paper.
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Derivation of a Damage Sensitive
Feature Using the Haar Wavelet
Transform
In this paper, a damage sensitive feature based on the wavelet transform of the vibration
signal is derived. The theoretical aspects of wavelet decomposition of vibration signals
are presented. It is shown that the energies of the wavelet coefficients at appropriate
scales can be used as damage sensitive features. Expressions for the energies of wavelet
coefficients using the Haar wavelet basis function are derived for a single degree and a
multidegree of freedom system. It is shown that the energies of the wavelet coefficients
extracted at higher scales are functions of the physical parameters of the system and the
loading function. Finally, the migration of damage sensitive feature vectors with damage
is illustrated for the ASCE Benchmark Structure. �DOI: 10.1115/1.3130821�
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1 Introduction
Structural health monitoring �SHM� has been receiving consid-

erable attention in the civil engineering community during the
past decade �1–6�. Structural health monitoring consists of the
following two steps: �a� diagnosis, which involves damage iden-
tification, localization, and quantification; and �b� prognosis,
which includes the structure’s residual capacity estimation and
residual life forecasting �7�. Recent research in damage detection
algorithms shows the extensive use of signal processing and pat-
tern classification techniques �8�. Signal processing techniques
were introduced for damage diagnosis by Farrar and co-workers
�8–10�. Such methods rely on the signatures obtained from the
recorded vibration, strain, or other data to extract features that
change with the onset of damage. In particular, damage diagnosis
algorithms require the tracking of some damage sensitive features.
The main focus of this paper is the derivation of a damage sensi-
tive feature using the Haar wavelet transform and establishing a
closed form relation with the physical parameters of the structural
system.

In the context of SHM, earlier work was carried out in wavelet
based system identification of nonlinear structures by Staszewski
�11�, Ghanem and Romeo �12� and Kijewski and Kareem �13�.
Ghanem and Romeo �12� used the discrete wavelet transform to
identify the parameters of a time varying system in the presence
of noise. Kijewski and Kareem �13� proposed guidelines for se-
lection of wavelet central frequencies, its use in modal separation,
and in addition developed a padding scheme to account for end
effects. Spanos and Failla �14� reviewed the literature on the ap-
plications of wavelet transforms to vibration problem. In the con-
text of this paper, they investigated system identification and dam-
age detection with wavelets. Hou et al. �15� used the wavelet
transform to study the sudden jump in the signal when the stiff-
ness of the system is changed.

In recent studies conducted by the authors �16,17�, the autore-
gressive moving average models were used to fit the vibration
signals obtained from a sensor. However, these models are valid
for stationary signals. Thus, in this study, the continuous wavelet
transform is used to decompose the signal to account for nonsta-

tionarity. It is important to note that although the application of
the model developed in this paper is for stationary signals, it can
also be applied to nonstationary signals with appropriate modifi-
cations. A damage sensitive feature relating to the energies of the
wavelet coefficients of the vibration signal is derived. It is shown
that the energies of wavelet coefficients of acceleration signals at
higher scales are related to parameters of the physical system and
thus are particularly suitable for the purpose of damage detection.
In order to illustrate this wavelet based method for damage detec-
tion, it is applied to the ASCE Benchmark Structure �18�.

The paper is organized as follows. In Sec. 2, the theoretical
aspects of wavelet decomposition of vibration signals are dis-
cussed. The continuous wavelet transform of a signal is written in
terms of the Fourier transform of the signal and the wavelet basis.
In Secs. 3 and 4, this framework is used to derive a closed form
expression for the energies of the Haar wavelet for a single degree
and multiple degree of freedom systems, respectively. The rela-
tionship of the damage sensitive feature to physical parameters of
the structure such as mode shapes, stiffnesses, and damping ratios
is demonstrated. Finally, in Sec. 5, the damage sensitive feature is
used to discriminate between a damaged and an undamaged state
using vibration signals obtained from the ASCE Benchmark
Structure.

2 Properties of the Continuous Wavelet Transform
A wavelet is a function ��t��L2�R� �the space of square inte-

grable functions� with the following properties �19�:

�
−�

�

��t�dt = 0

��� = 1 �1�

where � . � is the L2 norm. The mother wavelet function ��t�
�L2�R� that is dilated/scaled by a and translated by b, denoted
by �a,b�t�, is given as

�a,b�t� =
1
�a

�� t − b

a
	 �2�

where ��a,b�=1. Then the continuous wavelet transform �CWT� of
a function f�t��L2�R� is given as
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Wf�a,b� =�
−�

�

f�t�
1
�a

��� t − b

a
	dt �3�

where � represents the complex conjugate. It should be noted that
Eq. �3� is a convolution integral.

The main advantage of wavelet analysis over conventional
spectral methods such as Fourier methods is that data are localized
in both time and scale domains �19�. At lower scales, the wavelet
basis function has a smaller support and thus is better able to
localize transient phenomena such as discontinuities in the data
set. Similarly, at higher scales, the wavelet basis function has a
wider support, which helps in identifying long range phenomena.

In the context of this study, it is useful to develop the wavelet
transform in terms of the Fourier transform �FT� of a function
rather than the function itself. Thus we define the Fourier trans-
form of f�x��L2�R� as �20�

F�s� =�
−�

�

f�t�exp�− jts�dt �4�

where j is the square root of �1. The inverse Fourier transform
�IFT� of F�s� is obtained from

f�t� =
1

2�
�

−�

�

F�s�exp�jts�ds �5�

The power theorem is applied to obtain �20�

�
−�

�

f�t��a,b
� �t�dt =

1

2�
�

−�

�

F�s��a,b
� �s�ds �6�

where ��s� is the FT of ��t�.
By substituting Eq. �6� in Eq. �3�, it follows that

Wf�a,b� =
1

2�
�

−�

�

F�s��a,b
� �s�ds �7�

The Fourier transform �a,b�s� of the wavelet function �a,b�t� is
obtained as follows:

�a,b�s� =�
−�

�

�a,b�t�exp�− jts�dt =�
−�

�
1
�a

�� t − b

a
	exp�− jts�dt

= �a exp�− jsb���as� �8�

Thus, substituting Eq. �8� in Eq. �7�, Eq. �7� is rewritten as

Wf�a,b� =
1

2�
�

−�

�

F�s��a exp�jsb����as�ds �9�

In this paper, the Haar wavelet basis is considered. A similar
analysis with the Morlet wavelet transform can be found else-
where �21�. A close investigation of the Haar wavelet will provide
a physical understanding of wavelet coefficients of an acceleration
signal and will provide a basis for correlating these coefficients to
damage sensitive features in a pattern classification scheme. The
reason that this wavelet bases are investigated is because they
have a closed analytical form and provide a systematic derivation
of the energies of the wavelet coefficients. This approach can be
applied to other wavelet bases; however, they cannot be expressed
in a closed mathematical form making it difficult to represent. In
Sec. 2.1, we use the Fourier transform of the Haar wavelet basis
function to derive the wavelet coefficients of a function f�t�.

For the purposes of applying a statistical pattern classification
method for damage detection, we define the energy of the wavelet
coefficients at appropriate scales as the damage sensitive feature.
Thus, the energy of the wavelet coefficients at scale a, Ea, is
defined as follows:

Ea = 

b=1

K

�Wẍ�a,b��2 �10�

where Wẍ�a ,b� is the wavelet coefficient of the acceleration sig-
nal at the ath scale and bth time step, K is the number of data
points in the signal, and � · � is the absolute value of the quantity. In
Secs. 3 and 4, we will derive a closed form expression for the
damage sensitive feature using the Haar wavelet transform for
single degree of freedom �SDOF� and multiple degree of freedom
�MDOF� systems.

In this study, damage detection is carried out by using the en-
ergy of the coefficients of the sixth dyadic scale for the Haar
wavelet basis function. Selection of these scales has to do with the
support of the scaled wavelet basis. The higher scales have a
larger support of wavelet basis, thus increasing the likelihood of
detecting long term changes. This implies that the wavelet coeffi-
cients at higher scales would contain information about vibration
modes at lower natural frequencies. In this particular application,
ambient vibration data are being analyzed. In such applications,
damage detection would generally affect the lower modes because
higher modes are unlikely to be excited during ambient vibrations.
Thus wavelet coefficients at higher scales would be useful in dam-
age detection. Also, at higher scales, the wavelet coefficients do
not pick up a transient phenomenon such as spikes and jumps,
thus eliminating problems with noisy data.

Also, at higher scales, the wavelet coefficients do not pick up a
transient phenomenon such as spikes and jumps, thus eliminating
problems with noisy data.

In Sec. 2.1 we use the Fourier transform of the Haar wavelet
basis to derive the wavelet coefficients of a function f�t�.

2.1 Haar Wavelet. The Haar wavelet is defined as follows:

��t� = �1 for 0 � t � 0.5

− 1 for 0.5 � t � 1.0

 �11�

The FT of the Haar wavelet can be shown to be equal to

��s� =
1

js
�1 − exp�−

js

2
	�2

�12�

Thus, from Eqs. �9� and �12�, the wavelet coefficients using the
Haar basis are given as

WHf�a,b� =
j

2��a
�

−�

�
F�s�

s
exp�jsb��1 − exp� jas

2
	�2

ds

�13�
The Haar wavelet and its Fourier transform are shown in Fig. 1.

3 Derivation of the Damage Sensitive Feature Using
Wavelet Coefficients of Acceleration Signals for a SDOF
System

Consider a single degree of freedom �SDOF� system, with mass
m, damping coefficient c, and undamaged stiffness coefficient k,
subject to a forcing function g�t� whose equation of motion is
given as

mẍ + cẋ + kx = g�t� �14�
Taking the Fourier transform of Eq. �14� and applying the deriva-
tive rule F�dnf�t� /dtn�= �js�nF�s� the following expression is ob-
tained:

�− s2m + jcs + k�X�s� = G�s� �15�

where X�s� and G�s� are the FTs of the displacement and forcing
function, respectively. Here, we have made the assumption that
the system is linear and the forcing function is stationary. The first
assumption is valid, since when we compare the damage with the
undamaged system we are looking at an equivalent linear system
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with reduced stiffness. The second assumption is not always valid
in practice; however, we can segment the signal so that each sig-
nal is quasistationary.

With these assumptions, we can estimate the FT of the accel-
eration as

ẍ�s� = FT�ẍ�t�� = − s2X�s� =
− s2G�s�

− s2m + jcs + k
�16�

Using the framework developed in Sec. 2.1 and Eq. �16�, expres-
sions for the wavelet transform of acceleration signals are derived
next.

3.1 Haar Wavelet Transform of Acceleration Signals. From
Eqs. �9� and �16�, it can be shown that

Wẍ�a,b� =
1

2�
�

−�

�
− s2G�s�

�− s2m + jcs + k�
�a exp�jsb����as�ds

�17�

In particular, Haar wavelet coefficients of the acceleration signal
can be derived as

WHẍ�a,b� =
j

2��a
�

−�

�
− s2G�s�

�− s2m + jcs + k�s
exp�jsb��1

− exp� jas

2
	�2

ds �18�

In order to solve the above integral, the residue theorem and con-
tour integration is used �22�. The integral IH is defined as

IH =�
−�

�
sG�s�

�− s2m + jcs + k�
exp�jsb��1 − exp� jas

2
	�2

ds �19�

For an underdamped system, i.e., the damping ratio �=c /2m	n is
less than 1, the damped natural frequency 	d=	n

�1−�2, 	n is the
natural frequency of the SDOF system, and the poles of Eq. �19�,
p and q, are calculated as

p,q = j�	n 
 	n
�1 − �2 �20�

The residues of the integral in Eq. �19� are calculated as follows.
A function h�z� in the complex variable z is first defined as

h�z� =
zG�z�

�z − p��z − q�
exp�jzb��1 − exp� jaz

2
	�2

�21�

It can be proved that h�z� is analytic everywhere in the complex
plane except at z= p and z=q. Note that h�z� is analytic at z=0,
since 1−exp�jaz /2� is analytic at z=0. Using the residue theorem,
it can be shown that

IH = 2�j�Rp + Rq� �22�

where Rp and Rq are the residues of h�z� evaluated at p and q,
respectively. This proof of Eq. �22� is included in Sec. 7. Rp is
given as

Rp = lim
z→p

�z − p�h�z� =

pG�p�exp�jpb��1 − exp� jap

2
	�2

p − q
�23�

Similarly Rq is derived as

Rq =

qG�q�exp�jqb��1 − exp� jaq

2
	�2

q − p
�24�

Here we assume that the G�s� is defined on the complex plane.
Using the residue theorem, it can be shown that

WHẍ�a,b� =
1
�a

�Rp + Rq� �25�

It is noted the residues Rp and Rq are related to the physical
parameters of the system 	n and �, and also on the loading on the
SDOF system.

3.2 Damage Sensitive Feature. In this section, the damage
sensitive feature is derived for a SDOF system using the Haar
basis function. Using the relationship

�WHẍ�a,b��2 =
1

a
�Rp + Rq��Rp + Rq�� =

1

a
��Rp�2 + �Rq�22 Re�RpRq

���

�26�

where Re� · � is the real part of the complex quantity, we can con-
clude that

�WHẍ�a,b��2 �
1

a
��Rp�2 + �Rq�2 + 2�RpRq

��� �27�

It is noted that �p�= �q�=	n. Also, we observe that

�exp�jpb�� = ��exp�jb	d�exp�− b�	n��� = exp�− b�	n�

Fig. 1 Haar wavelet: „a… Haar basis function and „b… its Fourier
transform
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�exp�jqb�� = exp�− b�	n� �28�

and

��1 − exp� jap

2
	�2� = ��1 − exp� jap

2
	��2

= ��1 − exp� ja	d

2
	exp�− a�	n

2
	��2

= ��1 − c1 exp� ja	d

2
	��2

�29�

Similarly, it is observed that

��1 − exp� jaq

2
	�2� = ��1 − exp� ja	d

2
	exp�a�	n

2
	��2

= ��1 − c2 exp� ja	d

2
	��2

�30�

where c1=1 /c2=exp�−a�	n /2�.
The coefficient c1 is a decreasing term in a, whereas c2 is an

increasing term in a. Since we consider higher scales to compute
the energies, Eqs. �29� and �30� can be approximated as follows:

��1 − c1 exp� ja	d

2
	��2

= 1 + c1
2 − 2c1 cos�a	d

2
	

� 1 – 2c1 cos�a	d

2
	

��1 − c2 exp� ja	d

2
	��2

� 1 + c2
2 �31�

Thus, using Eqs. �28� and �31� we can conclude that

�Rp�2 + �Rq�2 �
exp�− 2b�	n���G�p�2��1 – 2c1 cos�a	d

2
		2

+ �G�q��2�1 + c2
2�2�

4�1 − �2�
�32�

In a similar fashion, we can show that

�RpRq
�� �

�G�p�G�q����1 + c2
2�

4�1 − �2
2�

�33�

The expression in Eq. �33� is a constant �i.e., not a function of b� and thus is not included in Eq. �34�.

�WHẍ�a,b��2 �
exp�− 2b�	n���G�p��2�1 – 2c1 cos�a	d

2
		2

+ �G�q��2�1 + c2
2�2�

4a�1 − �2�
�34�

where c1=1 /c2=exp�−a�	n /2�. For an acceleration signal sampled at 1 /�t Hz with K data points, the energy at scale a for the Haar
basis, Ea

Haar, is derived using Eq. �34�,

Ea
Haar �

��G�p��2�1 – 2c1 cos�a	d

2
		2

+ �G�q�2��1 + c2
2�2�

4a�1 − �2� 

b=1

K

exp�− 2b�	n� = �Haar�a�
exp�− 2�	n�t��1 − exp�− 2K�	n�t��

1 − exp�− 2�	n�t�
�35�

where

�Haar = �a�
��G�p��2�1 – 2c1 cos�a	d

2
		2

+ �G�q�2��1 + c2
2�2�

4a�1 − �2�

Equation �35� consists of �Haar, which is a function of c1 and
c2. Since the damage sensitive feature is obtained at higher scales
�i.e., the value of a increases� the value of c1 is not significant. As
the extent of damage increases, the values of c1 increase and c2
decreases. In such cases, c2 will dominate; thus Ea

Haar is sensitive
to damage at higher scales.

4 Derivation of the Damage Sensitive Feature Using
Wavelet Coefficients of Acceleration Signals for a
MDOF System

We next consider a structural system with N degrees of freedom
�DOFs� with M, C, and K defined as the mass, damping, and
stiffness matrices �of size N
N�, respectively. The forcing func-
tion is denoted by g�t�. For a proportionally damped system and
assuming that the damping ratio in each mode is equal to �, the

transfer function of the displacement at the kth DOF xk�t� and the
forcing function at the lth DOF, Hkl�s�, can be derived as �23�

Hkl�s� =
Xk�s�
Gl�s�

= 

r=1

N
�kr�lr

�	r
2 − s2 + 2j�	rs�

�36�

where Xk�s� and Gl�s� are the Fourier transform of the displace-
ment at the kth DOF xk�t� and the forcing function at the lth DOF
gl�t�. Thus, the FT of the acceleration ẍk�t� is given as

ẍk�s�

r=1

N
− s2�kr�lrGl�s�

�	2
2 − s2 + 2j�	rs�

�37�

where 	r is the rth modal natural frequency, �kr and �lr are the
kth and lth elements of the mass normalized rth mode shape vec-
tor �r. Using similar principles utilized in Sec. 3, the wavelet
coefficients of a MDOF system are derived in Sec. 4.1.

4.1 Wavelet Coefficients of Acceleration Signals. With re-
spect to the Haar wavelet, the wavelet coefficient of the accelera-
tion ẍk�t� is derived as
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WHẍk�a,b� =
j

2��a
�

−�

�



r=1

N
− s�kr�lrGl�s�

�	r
2 − s2 + 2j�	rs�


exp�jsb��1 − exp� jas

2
	�2

ds �38�

In order to calculate the above integral, we will use principles of
contour integration as is done for SDOF systems presented in Sec.
3. Again, the integral Ir for the rth vibration mode is defined as

Ir =�
−�

�
− s�kr�lrGl�s�

�	r
2 − s2 + 2j�	rs�

exp�jsb��1 − exp� jas

2
	�2

ds

�39�

The poles of Eq. �39�, p1,r and p2,r, are calculated as

p�1,r

2,r 
 = j�	r 
 	r
�1 − �2 �40�

The function t�z� in the complex variable z is defined as

t�z� =
�kr�lrzGl�z�

�z − p1��z − p2�
exp�jzb��1 − exp� jaz

2
	�2

�41�

It can be proven that t�z� is analytic everywhere in the complex
plane except at z= p1,r and z= p2,r. Using the residue theorem, it
can be shown that Ir=2�j�R1,r+R2,r�, where R1,r and R2,r are the

residues of t�z� evaluated at p1,r and p2,r, respectively. R1,r and
R2,r are evaluated as

R1,r = lim
z→p1,r

�z − p1,r�t�z�

=

�kr�lrp1,rGl�p1,r�exp�jp1,rb��1 − exp� jap1,r

2
	�2

p1,r − p2,r
�42�

Similarly R2,r can be derived as

R2,r =

�kr�lrp2Gl�p2,r�exp�jp2,rb��1 − exp� jap2,r

2
	�2

p2,r − p1,r
�43�

Using the residue theorem, it can be shown that

WHẍ�a,b� =
1
�a
�


r=1

N

R1,r + R2,r� �44�

Again, we approximate the energy of the Haar wavelet coeffi-
cients of acceleration ẍk�t� at scale a as Ea,k

Haar�1 /a�
r=1
N �R1,r�2

+ �R2,r�2�. The rth damped natural frequency 	d,r is given as 	d,r

=	r
�1−�2. We define c1,r=1 /c2,r=exp�−a�	r /2�.

Using similar approximations as in Sec. 3, we obtain the fol-
lowing expression for Ea,k

Harr:

Ea
Haar � 


b=1

K



r=1

N �kr
2 �lr

2 exp�− 2b�	r���Gl�p1,r��2�1 – 2c1 cos�a	d,r

2
		2

+ �Gl�p2,r��2�1 + c2
2�2�

4a�1 − �2�
�45�

Interchanging the summations, we can derive that

Ea
Haar � 


r=1

N

�Haar�a,r��kr
2 �lr

2 exp�− 2�	r�t��1 − exp�− 2K�	r�t��
�1 − exp�− 2�	r�t��

�46�

where

�Haar�a,r� =
��Gl�p1,r��2�1 – 2c1,r cos�a	d,r

2
		2

+ �Gl�p2,r��2�1 + c2,r
2 �2�

4a�1 − �2�

It is again observed that the energies of the wavelet coefficients
for the Haar wavelet basis contain information of the physical
system. Ea

Haar contains modal information of the system through
the kth and lth mass normalized eigenvectors �k and �l. As the
extent of damage increases and which mode is excited due to the
increase in damage, c1,r increases and c2,r decreases. As the value
of a increases, the value of c1,r is not significant. In such cases,
c2,r will dominate. Thus Ea

Haar can be used as an indicator of
damage.

Based on the above derivation, it can be concluded that as the
stiffness decreases due to damage, the response of the structure
will change resulting in changes in the energies based on the
wavelet coefficients. Consequently, the damage sensitive feature
based on the wavelet coefficients can capture this change in mea-
surements from an undamaged to a damaged structural state.

5 Application
In order to test the validity of the above derived damage sensi-

tive feature, numerically simulated data sets from the ASCE
Benchmark Structure are used. The data from the ASCE Bench-
mark Structure are particularly useful for this purpose because

damage was introduced systematically and measurements were
obtained after every stage of damage was introduced. The struc-
ture is a four story, two-bay by two-bay steel braced frame, illus-
trated in Fig. 2 �18�. There are 16 sensors �measuring accelera-
tion� in the braced frame, and their placement and direction of
measured acceleration are shown in Fig. 3 �18�. Damage is simu-
lated by removing braces in various combinations, resulting in a
loss of overall stiffness. The damage patterns �DPs� include the
following:

• damage pattern 0: undamaged structure
• damage pattern 1: removal of all braces on the first floor
• damage pattern 2: removal of all braces on the first and third

floors
• damage pattern 3: removal of one brace on the first floor
• damage pattern 4: removal of one brace on the first and third

floors
• damage pattern 5: damage Pattern 4+loosening of bolts
• damage pattern 6: reduction in the stiffness of a brace to 1/3

of its original value

Damage patterns 6 and 3 are minor, damage patterns 4 and 5 are
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moderate, and damage patterns 1 and 2 are major. Additional in-
formation on the ASCE Benchmark structure is available at http://
cive.seas.wustl.edu/wusceel/asce.shm/benchmarks.htm.

5.1 Damage Detection. Damage detection is performed under
the premise that the damage sensitive feature will migrate with the
onset of damage. In this study, the damage sensitive feature is
defined as the energy of the wavelet coefficients at the sixth dy-
adic scale for the Haar wavelet �denoted by E6�. It is hypothesized
that damage occurs if there is a difference in the mean values of
the damage sensitive feature before ��DSF,undamaged� and after
damage ��DSF,undamaged�. This can be achieved by using a statisti-
cal hypothesis test �16�, which is outside the scope of this paper.
The reason for choosing the sixth dyadic scale for the Haar wave-
let is because this scale is optimal for capturing important charac-

teristics of the signal, which are sensitive to damage for this spe-
cific application. In general, one would have to investigate several
scales to determine the best candidate for damage detection.

The data from all 16 sensors were analyzed at each damage
state, and damage states 1–6 were identified by all sensors. Al-
though damage states 4 and 5 were identified by all sensors as
well, no distinction could be found between these states. It is
important to recognize that damage state 4 is the same as damage
state 5 but in addition a bolt is loosened in damage pattern 5. This
type of damage is very localized and unless the sensor is placed
directly on the bolt, the damage state not likely to be detected
even by the sensor closes to the loosened bolt. In the following
discussion we present the results for representative sensors. These
are sensors 2, 3, and 9.

5.1.1 Sensor 2. Figure 4 shows the migration of the features
extracted from signals from sensor 2, from an undamaged state to
the damaged state for damage patterns 6 and 3. In the case of
damage pattern 6 �Fig. 4�a��, where the stiffness of a brace is
partially reduced on the first floor, it is observed that there is a
small separation between the means of E6. However, this separa-
tion is larger for damage pattern 3 �Fig. 4�b��, where a brace is
removed on the first floor. This difference in the means is signifi-
cantly larger in the case of major damage patterns 1 and 2 �Fig. 5�.
It is also noted that the variance of the clouds increases with
increase in damage.

5.1.2 Sensor 3. Figure 6 illustrates the migration of E6, ex-
tracted from sensor 3 for damage patterns 4 and 5. The means of
the damage sensitive feature E6 for the damaged clouds of dam-

Fig. 2 ASCE Benchmark Structure †18‡

Fig. 3 Placement of sensors and directions of acceleration
measurements on the ASCE Benchmark Structure †18‡

Fig. 4 Migration of the Haar wavelet based damage sensitive
feature E6 for sensor 2 with damage for minor patterns: „a…
damage pattern 6 and „b… damage pattern 3
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age patterns 4 and 5 are 166.41 and 166.45, respectively. These
results indicate that the change due to bolt loosening was not
detected. This result is expected as the damage sensitive feature
captures primarily global changes in the structure while bolt loos-
ening will require measurements that capture much more localized
material and component behavior.

5.1.3 Sensor 9. Figure 7 illustrates the feature clouds, ex-
tracted from sensor 9, for damage patterns 3 and 4. For damage
pattern 3, it is observed that there is a very little separation be-
tween the clouds because the brace has been removed in the x
direction and sensor 9 measures the acceleration in the y direction
�Fig. 3�. For damage pattern 4, there are two distinct clouds of
feature vectors with damage since a brace has been removed from
the third storey in the y direction near sensor 9.

For this damage pattern the separation of the clouds can be
observed to be small reflecting the fact that indeed this is a small
amount of damage introduced to the structure. This shows that the
damage sensitive feature is directly related to the amount of dam-
age; however, the quantification of damage with the Haar wavelet
appears to be nonconclusive.

6 Conclusions
In this paper, a damage sensitive feature based on the wavelet

transform of the vibration signal is derived. The damage sensitive
feature is defined as the energy of the wavelet coefficients at
higher scales. The theoretical aspects of wavelet decomposition of
vibration signals are presented. Expressions for the energies of
wavelet coefficients using the Haar wavelet basis function are

derived for a single degree and a multidegree of freedom system.
The derived damage sensitive feature is applied to various data
sets for the ASCE Benchmark Structure.

For a SDOF system, the damage sensitive feature, given in Eq.
�35�, depends on the natural frequency of the system 	n, the
damping ratio �, and the scale a. For the MDOF system, damage
sensitive feature, derived in Eq. �46�, contains modal information
of the system through the kth and lth mass normalized eigenvec-
tors �k and �l, natural frequencies, and damping ratios of the
system denoted by 	r and �, respectively, under the assumption of
proportional damping; and the scale a of the wavelet basis.

The proposed damage sensitive feature is shown to detect dam-
age for the numerically simulated data sets obtained from the
ASCE Benchmark Structure. Application of the damage sensitive
feature to the ASCE Benchmark simulation experiment demon-
strates that the algorithm is able to detect minor, moderate, and
major damage patterns. However, loosening of bolts cannot be
distinguished when it occurs in conjunction with brace cutting
because this damage will have a very localized influence. The
difference in the means of the damage sensitive feature is larger
for major damage than for moderate and minor damage patterns.
With this simple example the damage detection algorithm is used
only to illustrate damage detection and not damage quantification
or localization. The Haar wavelet is a simple wavelet �Fig. 1� and
thus may not be able to capture important details of the vibration
signal thus making it useful primarily for damage detection. Other
wavelets have been used by the authors, such as the Morlet wave-
let to quantify the damage as presented in Ref. �21�.

Fig. 5 Migration of the Haar wavelet based damage sensitive
feature E6 for sensor 2 with damage for major patterns: „a…
damage pattern 1 and „b… damage pattern 2

Fig. 6 Migration of the Haar wavelet based damage sensitive
feature E6 for sensor 3 with damage for „a… damage pattern 4
and „b… damage pattern 5 „undamaged „�…; damaged „+……
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Appendix: Derivation of the Integral IH

In this appendix, the derivation for the computation of Eq. �19�
is given.

Let the path �R=�1,R+�2,R, where Fig. 8 shows that �1,R is the
arc ABC and �2,R is the arc CA. If R is sufficiently large, both
poles p and q are within �R. By the residue theorem,

�
�R

h�z�dz = 2�j�Rp + Rq� �A1�

where Rp and Rq are poles of the function h�z� and are given by
Eqs. �23� and �24�, respectively. In this section, we will show that
limR→���2,r

h�z�dz=0. For this purpose, we prove the following
Lemma.

LEMMA. Let d�0. Then, limR→��0
�exp�−dR sin ��d�=0.

Proof.

�
0

�

exp�− dR sin ��d� =�
0

�/2

exp�− dR sin ��d�

+�
�/2

�

exp�− dR sin ��d� �A2�

To compute the second integral, make the substitution �=�−�.
Thus,

�
�/2

�

exp�− dR sin ��d� =�
0

�/2

exp�− dR sin ��d� �A3�

Thus,

�
0

�

exp�− dR sin ��d� = 2�
0

�/2

exp�− dR sin ��d� �A4�

Now, choose an arbitrarily small ��0

�
0

�/2

exp�− dR sin ��d� =�
0

�

exp�− dR sin ��d�

+�
�

�/2

exp�− dR sin ��d� �A5�

Since the function exp�−dR sin �� decreases in � in �0,� /2� and
exp�−dR sin ���exp�−dR sin �� in �� ,� /2�, we obtain

�
�

�/2

exp�− dR sin ��d� �
�

2
exp�− dR sin �� �A6�

If R is sufficiently large enough, i.e., R� �1 /d sin ��log�� /2��,
then ��

�/2exp�−dR sin ��d���.
Thus, for any ��0, there exists R�, such that if R�R�,

�0
�/2exp�−dR sin ��d���. Hence,

lim
R→�

�
0

�

exp�− dR sin ��d� = 2 lim
R→�

�
0

�/2

exp�− dR sin ��d� = 0

�A7�

�

Fig. 7 Migration of the Haar wavelet based damage sensitive
feature E6 for sensor 9 with damage for „a… damage pattern 3
and „b… damage pattern 4 „undamaged „�…; damaged „+……

Fig. 8 Illustration of the proof of the contour integration
formula
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Now on �2,R, z=R exp�j��, and �� �0,�� and for any real val-
ued a,

�exp�jaz�� = �exp�iR cos ���exp�− aR sin �� = exp�− aR sin ��
�A8�

Furthermore,

��1 − exp� jaz

2
	�2� � 1 + 2�exp� jaz

2
	� + �exp�jaz�� = 1

+ 2 exp�−
a

2
R sin �	 + exp�− aR sin ��

�A9�

Using the fact that dz= jR exp�j��d�, we obtain

��
�2,R

h�z�dz� � R�
0

� �G�z��exp�− bR sin ���1 + 2 exp�−
a

2
R sin �	 + exp�− aR sin ���

�exp�j��R − p��exp�j��R − q�
d� �A10�

Here again, we can approximate

�exp�j��R − p� � R��1 −
p

R
	� ; �exp�j��R − q� � R��1 −

q

R
	�

�A11�

Thus, for sufficiently large R, and say for some fixed constant �,
e.g., �=0.5, we get

R2

�exp�j��R − p��exp�j��R − q�
� 4 �A12�

Thus, Eq. �A10� maybe rewritten as

��
�2,R

h�z�dz� �
4

R
�G�exp�j��R����

0

�

exp�− bR sin ��d�

+ 2�
0

�

exp�− �a

2
+ b�R sin �	d�

+�
0

�

exp�− �a + b�R sin ��d�� �A13�

By the Lemma, each of these integrals on the right-hand side of
Eq. �A13� has to converge to zero.

Thus

lim
R→�

�
�2,R

h�z�dz = 0

Then,

lim
R→�

�
�R

h�z�dz = lim
R→�

�
−R

R

h�z�dz = IH �A14�

Thus, IH=2�j�Rp+Rq�.
�
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In this paper, a complete elastodynamic solution for axisymmetric problems under axial
body-forces in terms of two retarded potential functions in transversely isotropic media is
extended to the case of general torsionless axisymmetry. Allowing for both axial and
radial distributed internal loads through the use of an extra potential, the new solution
retains its completeness via the theory of repeated wave equations. By virtue of its
analytical design, the formulation can be reduced to the corresponding elastostatic case
by simply suppressing the time-dependence of its potentials as well as the case of isot-
ropy. In the limiting case of the latter material condition, the proposed representation for
elastostatic problem degenerates to a recent extension of Love’s potential function.
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1 Introduction
One of the characteristics of mechanics of composite materials

is anisotropy. Because of this the linear theory of anisotropic elas-
tic media has long been the subject of numerous investigations.
Among various possibilities, the case in which the material pos-
sesses an axis of elastic symmetry, transversely isotropy, is of
most interest. The elastostatic problems of transversely isotropic
material have been examined in a number of studies �e.g., Refs.
�1–6��. The analytical solution of elastodynamics problems for
transversely isotropic material has received even less attention.
One of the powerful approaches for dealing with the system of
partial differential equations in both elastostatics and elastody-
namics is method of potentials. Lekhnitskii �4� considered aniso-
tropic problems characterized by torsionless axisymmetry with the
axis of elastic symmetry coincident with the axis of stress sym-
metry and found the solution of the displacement equations in
terms of a single stress function satisfying a fourth-order partial
differential equation �see also Ref. �6��. Hu �3� considered the
general case of elastostatics problem in transversely isotropic me-
dia and generalized Lekhnitskii’s solution �4�. Elliott �1� presented
a solution of the three-dimensional problems in terms of two po-
tential functions, each satisfying a second-order partial differential
equation. He also described an axially symmetric system, where
his solution reduces to one potential function satisfying a fourth-
order partial differential equation, which itself is Lekhnitskii’s po-
tential function �4�. This was observed by Eubanks and Sternberg
�2� and described in detail by Wang and Wang �7�. The general-
ized Elliott solution �1� is related to Lodge �8�, called Elliott–
Lodge solution �see Ref. �7��, which can be connected to the
Lekhnitskii–Hu–Nowacki solution �7�.

When an elasticity solution is expressed in terms of potentials,
an important question is that of completeness. The literature in-
cludes several studies of completeness of the solutions of linear
elastostatics problems in the isotropic material in terms of poten-
tial functions. There are also a few studies for completeness of the
solution in transversely isotropic materials. Eubanks and Stern-
berg �2� proved that Lekhnitskii’s solution �4� in the case of tor-

sionless axisymmetric problems is complete, if the domain of in-
terest is z-convex, where the z-axis is considered parallel to the
axis of material symmetry. Wang and Wang �7� proved the com-
pleteness of the Lekhnitskii–Hu–Nowacki solution, when the do-
main is z-convex. They also proved the completeness of the
Elliott–Lodge solution under the same conditions.

Some investigations related to the general solution of the elas-
todynamics problems in linear isotropic elasticity and their com-
pleteness can be found in Refs. �9–15�. Recently, Eskandari-Ghadi
�16� introduced a complete solution for the general elastodynam-
ics problems in linear transversely isotropic materials in terms of
two potential functions. The solution reduces to one for torsion-
less axisymmetric problems, where, in the cylindrical coordinate
system �r ,� ,z�, the body-force is permitted to have only a com-
ponent along the axis of material symmetry.

It is the purpose of this paper to present a complete solution of
the elastodynamics problems in torsionless axisymmetric trans-
versely isotropic materials under both axial and radial body-
forces. As an extension of Ref. �16�, the solution is cast in terms
of two potential functions, which are governed by two uncoupled
inhomogeneous partial differential equations. The issue of com-
pleteness is addressed via the theory of repeated wave equations,
a generalized form of Boggio’s theorem, and the analyticity of the
solution with respect to the material parameters of the transversely
isotropic media as in Refs. �16,2�. With a direct suppression of the
time-dependence of the potentials, the solution is equally appli-
cable to elastostatic problems for transversely isotropic materials,
and elastodynamics and elastostatics problems of isotropic mate-
rials as well. For the elastostatic case of isotropy, the degenerate
formulation converges to Ref. �17�. The governing equation for a
pure torsion problem with an angular body-force field can be
solved by a direct displacement formulation and will not be elabo-
rated in this communication.

2 Statement of the Problem
Consider the body B at time t in the time interval �0, t0�, where

t0�0 can be infinite, to be regular in the sense of Ref. �18�. In a
cylindrical coordinate system �r ,� ,z�, the equations of motion for
axisymmetric responses may be written as

��rr

�r
+

1

r
��rr − ���� +

��zr

�z
+ br = �

�2u

�t2
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��rz

�r
+

1

r
�rz +

��zz

�z
+ bz = �

�2w

�t2 �1�

where �ij�r ,z , t� and �i , j=r ,� ,z� are the components of stress
tensor, � is the mass density, bi�r ,z , t� and �i=r ,z� are the radial
and axial body-force components, and u and w are the radial and
axial displacement components. Considering a linear Green-
elastic transversely isotropic material whose axis of material sym-
metry is in the z-direction, the stress-strain relationships can be
given in the form of �12�

�
�rr

���

�zz

�rz

� = �
C1111 C1122 C1133 0

C1122 C1111 C1133 0

C1133 C1133 C3333 0

0 0 0 C1313

��
�rr

���

�zz

2�rz

� �2�

With the strain-displacement relations as

�rr =
�u

�r
, ��� =

u

r
, �zz =

�w

�z
, 2�rz =

�u

�z
+

�w

�r
�3�

the equations of motion �1� can be written in terms of displace-
ments as

�1 + �1�C1212� �2u

�r2 +
1

r

�u

�r
−

u

r2� + �2C1212
�2u

�z2

+ �C1133 + �2C1212�
�2w

�r � z
+ br = �

�2u

�t2

�4�

�2C1212� �2w

�r2 +
1

r

�w

�r
� + C3333

�2w

�z2 + �C1133 + �2C1212�

�� �2u

�r � z
+

1

r

�u

�z
� + bz = �

�2w

�t2

where

C1313 = �2C1212, C1111 = �1 + �1�C1212 �5�
For a positive definite strain energy function, it is required that
C1212�0, �2�0, and 1+�1�0.

3 A General Elastodynamic Solution
As noted in Ref. �16�, the general solution of the equations of

motion �4� in the absence of radial body-forces can be given as

u�r,z,t� = − �3
�2F

�r � z
�6�

w�r,z,t� = �1 + �1���r
2 +

�2

1 + �1

�2

�z2 −
�

�1 + �1�C1212

�2

�t2�F

where �3= �C1133+C1313� /C1212, �r=�2 /�r2+� /r�r, and the po-
tential function F satisfies

	�1�2 − �
�4

�z2 � t2
F�r,z,t� =
− 1

�2�1 + �1�
bz�r,z,t�

C1212
�7�

In the above, ��=�r
2+�2 /s�

2 /�z2 /−�2 /c�
2 /�t2, ��=1,2�, �= �1

−1 /s2
2� /c1

2+ �C3333 /C1111−1 /s1
2� /c2

2; c1
2=C1111 /� and c2

2=C1313 /�,
with s�

2��=1,2� being the roots of

C3333C2323s
4 + �C1133

2 + 2C1133C2323 − C1111C3333�s2 + C1111C2323

= 0 �8�

To ensure the positive definiteness of the strain energy, s�
2��

=1,2� should not be zero or negative �4,5�. s�
2��=1,2� are param-

eters that may make sense for the amount of anisotropy of the
material. For an isotropic material, s1

2=s2
2=1, and � is identically

zero. In addition, because of the existence of the terms c1
2 and c2

2

in the expression for �, this parameter is small compared with
unity even for transversely isotropic material.

To allow for the case of a general nonzero radial body-force
field br�r ,z , t�, it is assumed that br�r ,z , t� is a piecewise continu-
ous function of both variables r and z. Following Ref. �17� for the
case of isotropy, one may define an auxiliary radial load potential
function 	�r ,z , t� for the transversely isotropic problem to be a
solution of the partial differential equation

�2	�r,z,t�
�r � z

= br�r,z,t� �9�

With the modified definition of the displacement field as

u�r,z,t� = − �3
�2F�r,z,t�

�r � z

w�r,z,t� = 	�1 + �1��r
2 + �2

�2

�z2 −
�

C1212

�2

�t2
F�r,z,t�

−
1

�3C1212
	�r,z,t� �10�

it can be shown that Eq. �10� satisfies the equations of motion �4�
with nonzero axisymmetric body-force densities, provided that
Eq. �9� holds and

	�1�2 − �
�4

�z2 � t2
F�r,z,t�

=
− 1

�2�1 + �1�
bz�r,z,t�

C1212
+

1

�2�3C1111

���r
2 +

C3333

C1212

�2

�z2 +
�

C1212

�2

�t2�	�r,z,t� �11�

It is clear that a solution by Eq. �10� satisfies, as does Eq. �6�, the
condition ez. curl�u ,0 ,w�T=0, where ez is the unit vector parallel
to the z-axis and the superscript T denotes the transpose. The
following section addresses the issue of completeness of Eq. �10�
for a regular simply connected transversely isotropic solid.

Claim 1: Completeness of the solution (10). Let B be a regular
simply connected region in Euclidian space such that a straight
line parallel to the z-axis intersects the boundary of B in at most
two points. Let br�r ,z , t� and bz�r ,z , t� be two piecewise continu-
ous functions on B and on an open interval �0, t0�. If u�r ,z , t� and
w�r ,z , t� are the solutions for the equations of motion �4� and
analytic with respect to � in a finite region including 0, then, there
exists a function 	�r ,z , t� of class C2 on both B and on the inter-
val �0, t0�, which satisfies Eq. �9� and there exists a function
F�r ,z , t ;�� and of class C4 on both B and the interval �0, t0� that
satisfies Eq. �11�.

Proof. First, it should be evident that the integration of the
partial differential equation �9� is straightforward in an axisym-
metric and simply connected domain, yielding

	�r,z,t� =�� br�r,z,t�drdz, r 
 0, r,z � B �12�

and let u�r ,z , t� and w�r ,z , t� represent the solutions of the wave
equations �4�. One can write u and w in terms of F�r ,z , t ;�� and
	�r ,z , t� as Eq. �10� and they will be a solution of the equations of
motion provided that F satisfies Eq. �11�. The existence of a so-
lution to an equation in the form of Eq. �11� for the domains of
interest, however, has been established in Ref. �16�. By virtue of
the smoothness hypothesis on 	�r ,z , t� and bz�r ,z , t�, the right-
hand side of Eq. �11� is a piecewise continuous function on B and
on an open interval �0, t0�, which is written as
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b̄�r,z,t� =
− 1

�2�1 + �1�
bz�r,z,t�

C1212
+

1

�2�3C1111

���r
2 +

C3333

C1212

�2

�z2 +
�

C1212

�2

�t2�	�r,z,t� �13�

To make the solution for Eq. �11�, one may define F0 to be a
solution for

�1�2F0 = b̄�r,z,t� �14�

To find F0, one may first set F̂0�r ,z , t�=�2F0�r ,z , t�, so that Eq.
�14� can be written as

�1F̂0�r,z,t� = b̄�r,z,t� �15�

for which the retarded Newtonian potential �Ref. �19�, Art. 83 and
Chap. IX�

F̂0�r,z,t� = −
1

4�
� �

B
� b̄�r,z,t − R1/c1�

R1�r,z; r̃, z̃�
dṼ �16�

With

R1�r,z; r̃, z̃� = ��r − r̃�2 + s1
2�z − z̃�2 �17�

is a solution. Since s1
2 is neither zero nor negative real number, the

only singular point in the volume integral �16� is at �r ,z�. As it can

be deduced from Eq. �16� that F̂0 is a C2 function on B� �0, t0�,
one may define F0 as

F0�r,z,t� = −
1

4�
� �

B
� F̂0�r,z,t − R2/c2�

R2�r,z; r̃, z̃�
dṼ �18�

where R2�r ,z ; r̃ , z̃� is

R2�r,z; r̃, z̃� = ��r − r̃�2 + s2
2�z − z̃�2 �19�

With F̂0 as a solution to Eq. �15�, the function F0 in Eq. �18� can,
by virtue of the theory of retarded potentials, be shown to be a

solution to �1�2F0= b̄ with the stated smoothness. Next we de-
fine 
Fj� j=1

� to be the solution of the following set of equations:

�1�2Fj =
�4Fj−1

�z2 � t2 , j = 1,2,3, . . . �20�

It is seen that F1 is in the form of F0, if one replace �4F0 /�z2� t2

instead of b̄�r ,z , t� in Eq. �14�, and F2 is in the form of F0, if one

replace �4F1 /�z2� t2 instead of b̄�r ,z , t� in Eq. �14�, and so on. By
virtue of the analyticity of the elasticity solution with respect to �,
one may write F�r ,z , t ;�� in the form of

F�r,z,t;�� = �
j=0

�

Fj�r,z,t�� j �21�

With Fj�r ,z , t� derived by the procedure given above, one may
substitute Eq. �20� into Eq. �11� and finds

�
j=0

�

�1�2�Fj�r,z,t�� j� − ��
j=0

�
�4

�z2 � t2 �Fj�r,z,t�� j� = b̄�r,z,t�

�22a�

or

�1�2F0 + �
j=1

�

�1�2�� jFj� − �
j=0

�
�4

�z2 � t2 �� j+1Fj� = b̄ �22b�

where b̄�r ,z , t� is given in Eq. �13�. On taking F0 as a particular
solution to Eq. �14�, Eqs. �22a� and �22b� can be satisfied if

�
j=1

� �	�1�2Fj −
�4Fj−1

�z2 � t2
� j� = 0 �23�

This equation is satisfied if 
Fj� j=1
� is the solution of Eq. �20�.

Finally, the smoothness of F�r ,z , t ;�� can likewise be deduced
from the smoothness of Fj, which completes the proof. �

By virtue of Eqs. �10�, �2�, and �3�, the strain-potential and
stress-potential relations in terms of F�r ,z , t ;�� are

�rr = − �3
�3F

�r2 � z

��� = −
�3

r

�2F

�r � z
�24�

�zz =
�

�z
	�2

�2

�z2 + �1 + �1��r
2 −

�

C1212

�2

�t2
F −
1

�3C1212

�	

�z

�rz =
1

2
	− �3

�3F

�r � z2 + ��2
�3

�r � z2 + �1 + �1�
�

�r
�r

2

−
�

C1212

�3

�r � t2�F −
1

�3C1212

�	

�r



�rr =
�

�z
	− �3�C1111

�2

�r2 + C1122
1

r

�

�r
�F

+ C1133��1 + �1��r
2 + �2

�2

�z2 −
�

C1212

�2

�t2�F −
C1133

�3C1212
	


��� =
�

�z
	− �3�C1122

�2

�r2 + C1111
1

r

�

�r
�F

+ C1133��1 + �1��r
2 + �2

�2

�z2 −
�

C1212

�2

�t2�F −
C1133

�3C1212
	


�25�

�zz =
�

�z
		�C3333�1 + �1� − �3C1133��r

2 + �2
�2

�z2 −
�

C1212

�2

�t2
F

−
C3333

�3C1212
	


�rz = C1313
�

�r
	��1 + �1��r

2 + ��2 − �3�
�2

�z2 −
�

C1212

�2

�t2�F

−
1

�3C1212
	


3.1 Elastodynamic Solution in Isotropic Materials. In the
special case of isotropy, the elasticity tensor is described by

C1111 = C3333 = 2
 + �, C1122 = C1133 = �, C1212 = C1313 = 


�26�

where � and 
 are Lame’s constants. Using Eq. �26� one may
infer that

�1 = �3 =
� + 




, �2 = 1, s0

2 = s1
2 = s2

2 = 1, � = 0 �27�

c1
2 =

� + 2


�
, c2

2 =



�
�28�

Substituting relations �26�–�28� into Eq. �10� implies

u�r,z,t� = −
� + 





�2F�r,z,t�
�r � z
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w�r,z,t� =
� + 2




��r

2 +



� + 2


�2

�z2 −
�

� + 2


�2

�t2�F�r,z,t�

−
1

� + 

	�r,z,t� �29�

where F�r ,z , t� satisfies

�i1�i2F�r,z,t� =
− 1

� + 2

bz�r,z,t� +




�� + 2
��� + 
�

���r
2 +

� + 2





�2

�z2 +
�




�2

�t2�	�r,z,t� �30�

in which for ��=1,2�, �i�=�2−�2 / �c�
2 � t2� is the wave operator

for isotropic material and �2 is the usual three-dimensional
Laplace operator. The governing equation for 	�r ,z , t� does not
change and 	�r ,z , t� is again a solution for Eq. �9�.

In the isotropic case, the strain- and stress-potential relations
can be found by using Eqs. �24�–�28� as

�rr = −
� + 





�3F

�r2 � z

��� = −
� + 





1

r

�2F

�r � z
�31�

�zz =
�

�z
	 �2

�z2 +
� + 2




�r

2 −
�




�2

�t2
F −
1

� + 


�	

�z

�rz =
1

2
	−

� + 





�3F

�r � z2 + � �3

�r � z2 +
� + 2





�

�r
�r

2 −
�




�3

�r � t2�F

−
1

� + 


�	

�r



�rr =
�

�z
	�− �� + 2
�

�2

�r2 + �
1

r

�

�r
�F + �� �2

�z2 −
�




�2

�t2�F

−
�

� + 

	


��� =
�

�z
	��

�2

�r2 − �� + 2
�
1

r

�

�r
�F + �� �2

�z2 −
�




�2

�t2�F

−
�

� + 

	


�32�

�zz =
�

�z
		�3� + 4
��r

2 +
�2

�z2 −
�




�2

�t2
F −
� + 2


� + 

	


�rz = 

�

�r
	�� + 2




�r

2 −
�




�2

�z2 −
�




�2

�t2�F −
1

� + 

	


4 Reduction for Elastostatics
In the case of linear elastostatics for transversely isotropy, the

field functions F and 	 can, unlike some classical dynamic po-
tentials such as Lame’s, be taken to be independent of time and
the solution �10� can be reduced to

u�r,z� = − �3
�2F

�r � z
�33�

w�r,z� = �1 + �1���r
2 +

�2

1 + �1

�2

�z2�F −
1

�3C1212
	

where the governing equations for 	�r ,z� and F�r ,z� are, respec-
tively, changed to

�2	�r,z�
�r � z

= br�r,z� �34�

�1�2F�r,z� =
− 1

�2�1 + �1�
bz�r,z�
C1212

+
1

�2�3C1111

���r
2 +

C3333

C1212

�2

�z2�	�r,z� �35�

in which the operator �� for ��=1,2� is ��=�r
2+�2 /s�

2 �z.
On the basis of the theory of Newtonian potential, the com-

pleteness of the elastostatic solution �34� can be readily estab-
lished. To show the existence of solutions for 	�r ,z� and F�r ,z� it
is evident from Eq. �12� that 	�r ,z� can be given by

	�r,z� =�� br�r,z�drdz, r 
 0, r,z � B �36�

as a solution to Eq. �33�. Denoting the right-hand side of Eq. �34�
as

b̄�r,z� =
− 1

�2�1 + �1�
bz�r,z�
C1212

+
1

�2�3C1111

���r
2 +

C3333

C1212

�2

�z2 +
�

C1212

�2

�t2�	�r,z�

then F is the solution of �1�2F= b̄. With �2F denoted as F1, it is
clear that F1 is governed by

�1F1 = b̄ �37�

A solution of Eq. �37� can be given in terms of the Newtonian
potential function �19�

F1�r,z� = −
1

4�
� �

B
� b̄�r,z�

R1�r,z; r̃, z̃�
dṼ �38�

where R1�r ,z ; r̃ , z̃� is given by Eq. �17�. Then, F�r ,z� is the solu-
tion of

�1F�r,z� = F1�r,z� �39�

which admits

F�r,z� = −
1

4�
� �

B
� F1�r,z�

R2�r,z; r̃, z̃�
dṼ �40�

as a solution of �1�2F= b̄ with R2�r ,z ; r̃ , z̃� given by Eq. �19�.
The strain and stress components in terms of the potentials 	

and F are identical in form to those in Eqs. �24� and �25�.

4.1 Elastostatic Solution for Isotropic Materials. In the lim-
iting case of an isotropic material, the material conditions of Eqs.
�26� and �27� reduce the elastostatic displacements in Eq. �33� to

u�r,z� = −
� + 





�2F

�r � z
�41�

w�r,z� =
� + 2




��r

2 +



� + 2


�2

�z2�F −
1

� + 

	

where the governing equations for 	�r ,z� and F�r ,z� are, respec-
tively, changed to

�2	�r,z�
�r � z

= br�r,z� �42�
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�2�2F�r,z� =
− 1

� + 2

bz�r,z� +




�� + 2
��� + 
�

���r
2 +

� + 2





�2

�z2�	�r,z� �43�

in which �2 is the usual three-dimensional Laplace operator.
In the same way, one may start from Eq. �29�, the general

solution for torsionless axisymmetric wave equations in isotropic
materials, and eliminate the derivatives with respect to time and
get the solution �41�.

To show that expressions �41�–�43� coincide with those in Ref.
�17� for isotropy, it is sufficient to replace � and 
 with �E / �1
+���1−2�� and E /2�1+��, respectively, to get

u�r,z� = −
1

�1 − 2��
�2F

�r � z
�44�

w�r,z� =
2�1 − ��
�1 − 2��

�r
2F +

�2F

�z2 −
2�1 + ���1 − 2��

E
	

where 	�r ,z� is the solution of Eq. �42� and

�2�2F�r,z� =
− �1 + ���1 − 2��

E�1 − ��
bz�r,z� +

�1 + ���1 − 2��2

E�1 − ��

���r
2 +

2�1 − ��
�1 − 2��

�2

�z2�	�r,z� �45�

In these expressions � and E are Poisson’s ratio and Young’s
modulus, respectively. Equations �44� and �45� are exactly the
same as the equation given by Simmonds �17� if one replaces F
with �1−2���1+��FLove /E, where FLove is Love’s potential func-
tion �20�.

5 Conclusion
Within the framework of linear Green-elasticity, a complete so-

lution for the elastodynamics and elastostatics problems of tor-
sionless axisymmetric transversely isotropic material with general
body-force fields in the vertical and radial directions is presented.
By virtue of two potential functions, the problem in a suitably
convex domain is shown to be reducible to a fourth-order and
second-order inhomogeneous partial differential equations. In the

case of isotropy, the solution reduces to the format proposed by
Simmonds �17� who did not address the issue of completeness.
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The M-Integral Description for a
Brittle Plane Strip With Two
Cracks Before and After
Coalescence
In this paper we extend the M-integral concept (Eshelby, J. D., 1956, The Continuum
Theory of Lattice Defects, Solid State Physics, F. Seitz and D. Turnbull, eds., Academic,
New York, pp. 79–141; Eshelby, J. D., 1970, The Energy Momentum Tensor in Continuum
Mechanics, Inelastic Behavior of Solids, M. F. Kanninen, ed., McGraw-Hill, New York,
pp. 77–115; Eshelby, J. D., 1975, “The Elastic Energy-Momentum Tensor,” J. Elast., 5,
pp. 321–335; Knowles, J. K., and Sternberg, E., 1972, “On a Class of Conservation Laws
in Linearized and Finite Elastostatics,” Arch. Ration. Mech. Anal., 44, pp. 187–211;
Budiansky, B., and Rice, J. R., 1973, “Conservation Laws and Energy Release Rates,”
ASME J. Appl. Mech., 40, pp. 201–203; Freund, L. B., 1978, “Stress Intensity Factor
Calculations Based on a Conservation Integral,” Int. J. Solids Struct., 14, pp. 241–250;
Herrmann, G. A., and Herrmann, G., 1981, “On Energy Release Rates for a Plane
Cracks,” ASME J. Appl. Mech., 48, pp. 525–530; King, R. B., and Herrmann, G., 1981,
“Nondestructive Evaluation of the J- and M-Integrals,” ASME J. Appl. Mech., 48, pp.
83–87) to study the degradation of a brittle plan strip caused by irreversible evolution:
the cracks coalescence under monotonically increasing loading. Attention is focused on
the change of the M-integral before and after coalescence of two neighborly located
cracks inclined each other. The influences of different orientations of the two cracks and
different coalescence paths connecting the two cracks on the M-integral are studied in
detail. Finite element analyses reveal that different orientations of the two cracks lead to
different critical values of the M-integral at which the coalescence occurs. It is concluded
that the M-integral does play an important role in the description of the damage extent
and damage evolution. However, it only provides some outside variable features. This
means that the complete failure mechanism due to damage evolution cannot be governed
by a single parameter MC as proposed by Chang and Peng, 2004, “Use of M integral for
Rubbery Material Problems Containing Multiple Defects,” J. Eng. Mech., 130(5), pp.
589–598. It is found that there is an inherent relation between the M-integral and the
reduction of the effective elastic moduli as the orientation of one crack varies, i.e., the
larger the M-integral is, the larger the reduction is. Of great significance is that the
M-integral is inherently related to the change of the total potential energy for a damaged
brittle material regardless of the detailed damage features or damage evolution. There-
fore, this provides a useful and convenient experimental technique to measure the values
of M-integral for a damaged brittle material from initial damage to final failure without
use of many stain gages (King, R. B., and Herrmann, G., 1981, “Nondestructive Evalu-
ation of the J- and M-Integrals,” ASME J. Appl. Mech., 48, pp. 83–87).
�DOI: 10.1115/1.3130818�

Keywords: M-integral, damage evolution, brittle material, finite element method, cracks
coalescence

1 Introduction

As conventional engineering materials, brittle or quasibrittle
materials such as ceramics, concretes, glass, polymethyl meth-
acrylate �PMMA�, etc., are still widely used in both civil engineer-
ing and mechanical engineering. The structural integrity of the
components made of such materials is substantially limited to the
growth of a system of distributed defects, e.g., microcrack nucle-
ation, growth, and coalescence, that may induce damage evolu-

tion, macrocrack, and final failure. The detailed evolution process
from the formation of densely distributed microcracks with ran-
dom locations and orientations to a macrocrack, to the authors’
knowledge, is still not fully understood up to present although
some outstanding theories, e.g., the inner variable theory, the ef-
fective elastic moduli theory, and/or the continuum damage me-
chanics, have become popular in the past 20 years �see, e.g.,
Chaboche �1,2�, Krajcinovic �3�, Kachanov �4,5�, and Ju and Chen
�6,7� among many others�. As well-known, from the mathematical
point of view, the most difficult point is how to introduce some
useful and convenient parameters for describing the irreversible
damage evolution. For example the simplest one: the detailed pro-
cess for microcracks coalescence under a monotonically increas-
ing or cyclic loading. These parameters should not only have clear
physical meanings but also be easy to measure. However, in gen-
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eral, the coalescence path between two microcracks could not be
known beforehand even in the simplest case where two neigh-
borly microcracks are under consideration. Figure 1 shows a pic-
ture provided by Professor Chen Zemao �Vice Dean, School of
Aerospace, Xi’an Jiaotong University�, in which the coalescence
among many surface microcracks can be seen.

Recently, Chen �8,9� proposed an M-integral description to
study a cloud of static microcracks in an infinite plane brittle solid
subjected to a remote uniform tensile loading. Instead of working
in the Continuum Damage Mechanics by Chaboche �1,2�, his in-
vestigation starts from the Eshelby’s �10–12� energy momentum
tensor and the associate invariant integrals �13–15�, which have
wide applications in fracture mechanics but have little applica-
tions in damage mechanics. After performing some lengthy ma-
nipulations and numerical calculations, he found that the
M-integral plays an important role in the description of damaged
brittle materials. For example, the tensile loading direction along
which the reduction of the effective elastic modulus due to micro-
cracking becomes maximum, whereas the tensile loading direction
along which the reduction of effective elastic modulus due to
microcracking becomes minimum is just the direction along
which the M-integral becomes minimum. His work implies that a
bridge between the invariant integral such as the M-integral and
the damage mechanics might be established. Following Chen’s
�8,9� work, a problem-invariant parameter MC �the critical value
of the M-integral� was proposed by Chang and Chien �16� who
suggested a possible fracture parameter for describing the degra-
dation of material and structural integrity caused by irreversible
evolution of multiple defects in anisotropic elastic solids. More
recently, following Chen’s �8,9� work, an energy parameter based
on the concept of the M-integral which was proposed by Chang
and Peng �17�, proved to be capable of describing the fracture
behavior of a multidefect mechanical system. They considered the
formulation to be suited for fracture analysis in rubbery material
problems subjected to large elastic deformation. On one hand,
however, all the investigations mentioned above were limited to
static cracks or defects without any treatment on the irreversible
damage evolutions, say, the coalescence of the two cracks. On the
other hand, it is still unclear whether the critical value of the
M-integral denoted by MC could be considered as a material con-
stant or, in other words, whether the complete damage evolution
process, say, the coalescence of the two neighborly located micro-
cracks, could be governed by the single parameter MC.

The goal of this paper is to provide a special investigation for
this simplest kind of irreversible damage evolution �i.e., the irre-
versible coalescence of two microcracks�, which is based on the
M-integral concept, and to clarify whether the coalescence of the
two neighborly located microcracks could be governed by the
single parameter MC. Different orientations of the two cracks are
considered, which yield quite different coalescence patterns. At-
tention is focused on the following four points: �i� the change of
the M-integral before and after coalescence of the two neighborly
located cracks in a brittle plane strip; �ii� the influence of different
coalescence paths on the M-integral before and after coalescence;
�iii� the corresponding relationship between the M-integral and the
reduction of the effective elastic muduli before and after coales-
cence; and �iv� the inherent relation between the change of the

total potential energy �CTPE� and the M-integral before and after
coalescence. Detailed finite element analyses are performed by
using the ANSYS program for a strip with two cracks under plane
stress deformations.

It is concluded that there is a jump of the M-integral when
coalescence of the two cracks occurs. This is because the damage
evolution yields the defect-configuration change from one kind of
defect-configuration to another, whereas the M-integral just repre-
sents this change: the energy release during coalescence. It is
found that different coalescence paths have little influence on the
value of the M-integral, which can be neglected. Under a certain
tensile loading, different orientations of the two cracks yield dif-
ferent values of the M-integral and in turn the critical values of the
M-integral are different, at which coalescence occurs, implying
that the critical value of the M-integral denoted by MC is
configuration-dependent. In other words, the damage evolution
and the complete failure mechanism of a brittle material with
many defects cannot be governed by a single parameter MC as
proposed by Chang and Peng �17�. Rather, some defect-
configuration parameters should be introduced to modify the ap-
parent dependence on the defect-configurations and damage evo-
lution. By taking different orientations of the two cracks and
comparing the calculated values of the M-integral to the reduction
of the effective elastic moduli under the same tensile loading, it is
concluded that the larger the M-integral is, the larger the reduction
is. Of great significance is that under a monotonically increasing
loading, the M-integral is inherently related to the change of the
total potential energy before, during, and after coalescence for a
damaged brittle material regardless of the detailed damage evolu-
tion features. This may provide a useful and convenient experi-
mental technique to measure the values of the M-integral for a
damaged brittle material during damage evolution until final fail-
ure occurs without use of many strain gages �18�. It is concluded
that the M-integral does actually play an important role in the
description of the damage extent and the damage evolution. How-
ever, it only provides some outside variable features �called the
outside variable theory� without any consideration of the inner
variable features �the so-called inner variable theory�. Thus, the
present investigation shows a possible way to describe the com-
plete failure mechanism of a brittle material with many defects,
i.e., the combination of the outside variable theory with the inner
variable theory.

2 Basic Formulations and Finite Element Analyses
The original formulation of the M-integral established by

Knowles and Sternberg �19� and Budiansky and Rice �20� is given
as follows:

M =�
C

�wxini − Tkuk,ixi�ds �1�

where w, Tk, uk, and ni denote the strain energy density, the trac-
tions, the displacements and the outside normal vector on the
selected integral contour C, respectively; the subscript prima � �,i
with i=1 or 2 refers to the corresponding differentiation with re-
spect to the coordinates x1 and x2, respectively.

Usually, Eq. �1� was used to calculate the crack tip parameters
for a single crack as done by Freund �21� without any treatment of
damaged brittle materials with many defects. However, from the
physical point of view, as the M-integral represents the energy
dissipation due to the expansion of defects �20,22�, there should
be a bridge between the M-integral and the damage extent for
static defects in brittle materials. Indeed, Chen �8,9� applied the
M-integral analysis for a cloud of static microcracks in an infinite
plane elastic solid and proved that the M-integral is twice the
CTPE

Fig. 1 The picture after crack coalescence, provided by Pro-
fessor Chen Zemao „Vice Dean, School of Aerospace, Xi’an
Jiaotong University…

061017-2 / Vol. 76, NOVEMBER 2009 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.45. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



M = 2U �2�

where U denotes the change of the total potential energy induced
from the existence of the many static microcracks.

After performing detailed local-global coordinate transforma-
tions, Chen �8,9� emphasized that the M-integral for a cloud of
defects is divided into two parts: the net part and the additional
part.

M = MN + MA �3�

where the first, MN, is the summation of the contribution induced
from each defect in its local coordinate system and the second,
MA, is the summation of the contribution induced from Jk-integral
vector and the global coordinates of each defect center, which
accounts for the interacting effects among multidefects. Thus, for
a brittle material with finite dimensions, the M-integral might be
dependent on the shifts of the global coordinate system. Only
when the closed path selected to calculate the M-integral encloses
all discontinuities including all defects and the outside boundaries
could the M-integral be independent from the shifts of the global
coordinate system.

However, Chen’s work �8,9� was limited to static microcracks
and infinite plane materials without any treatment of the damage
evolution and the boundary effects of finite plane materials as
shown in Fig. 2. In this section, using finite element analyses, we
consider a simplest and basic 2D damage evolution problem: The
coalescence between two microcracks in a finite plane brittle strip
to clarify the role played by the M-integral before and after coa-
lescence. Figure 2 shows the configuration of the brittle plane
strip in which the relative location of the two cracks with respect
to the outside boundaries of the strip can be changed by the ori-
entation angle � being 11.25 deg, 22.5 deg, 33.75 deg, and 45 deg,
respectively. The brittle strip is made of PMMA with the Young’s
elastic modulus E=2.565 Gpa and the Poisson’s ratio �=0.332,
and its tensile strength is approximately 40 MPa. The dimensions
of the strip are 27 mm�100 mm�3 mm �width�height
� thickness� with w, h, d, l1, l2, and � being the width, the height,
the distance between one microcrack tip and the another microc-
rack center, the lengths of the two microcracks �100 �m and
125 �m, respectively�, and the orientation angle of the right mi-
crocrack, respectively �Fig. 2�. Here, the distance d is always
taken to be 62.5 �m. Thus, strong interaction between the two
cracks exists. Detailed dimensions of the strip are shown in Fig. 2,
which corresponds to the case before coalescence of the two
cracks. Alternatively, Fig. 3 shows the configuration after coales-
cence of the two cracks, provided that the coalescence occurs
along the straight connecting line starts from one crack tip and
ends at another crack surface or tip, depending on the value of the
inclined angle �. By using the ANSYS program, the schematic finite
element meshes before coalescence of the two cracks for the four

orientation angles 11.25 deg, 22.5 deg, 33.75 deg, and 45 deg, are
shown in Figs. 4�a�–4�d�, respectively. Figures 5�a�–5�d� show the
schematic finite element meshes after coalescence of the two
cracks for the four orientation angles 11.25 deg, 22.5 deg, 33.75
deg, and 45 deg, respectively, where the connecting path starts
from one crack tip and ends at another crack surface or tip, de-
pending on the value of the inclined angle � �see Fig. 3�. In order
to avoid the mesh sensitivity on the results of the M-integral, two
kinds of mesh in the ANSYS program adopted in the present cal-
culation: the fine free mesh with more than 12,000 elements and
the mapped mesh in the ANSYS program. It is verified that the
relative errors induced from the mesh sensitivity are always less
than 0.5%. Moreover, in our calculation, the two very flat ellipses
with major axis 100 �m and minor axis 5 �m are adopted in
Figs. 4�a�–4�d� and Figs. 5�a�–5�d�. The profiles near each root of
all ellipses are approximately similar as we can possibly infer.

It is seen that the coalescence paths determined from the maxi-
mum hoop stress criterion indicated by the red marks in Figs.
6�a�–6�d� for the four orientation angles for the four cases are
quite different. Figures 7�a�–7�d� show the deformation features
after the two cracks coalescence. In order to avoid the boundary
effect of the strip �8,9�, Figs. 8�a� and 8�b� show four typical
integral paths selected for calculating the M-integral before or
after coalescence for the strip with the two cracks. In Fig. 8�a�,
path 1 and path 2 are selected within the strip, whereas in Fig.
8�b� path 3 and path 4 are selected outside the strip by introducing
an imaginary material with much smaller elastic modulus sur-
rounding the strip. As the elastic modulus of the imaginary mate-
rial tends to zero �8,9�, we can account for the boundary effect of
the strip on the additional part of the M-integral denoted by MA on
the right hand side of Eq. �2�. After using the ANSYS program and
performing detailed finite element analyses, we proved in Table 1
�before coalescence� and Table 2 �after coalescence� that the val-
ues of the M-integral calculated from the two paths in Fig. 8�a�
and those from the two paths in Fig. 8�b� were approximately the
same whenever the coalescence occurs or not, implying that the
boundary effect of the plane strip could be neglected. This is
because the two cracks with the length of about 100 �m are
always located far apart from the boundaries of the strip �several
millimeters�. Thus, we can focus our attention on the influence of
the change of the orientation angle � and the coalescence paths
between the two cracks on the M-integral before and after coales-
cence. It should be emphasized that the slopes of the M-integral
curves against the loading before and after the coalescence are
quite different. That is, the slopes before the coalescence should
always be less than those after the coalescence �see Figs. 9–11�.
Therefore, all the ratio of the M-integral at 4.7 MPa �after coales-
cence� to the M-integral at 3 MPa �before coalescence� should
always be greater than the ratio �4.7 /3�2=2.4544 without any
doubt. For example, in the case of 11.25 deg the two values of the

Fig. 2 A brittle strip with two neighborly located cracks before
coalescence

Fig. 3 Detailed configuration for the strip with the two cracks
after coalescence
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M-integral before and after coalescence are 6.8373 and 1.9131,
respectively, with 6.8373 /1.9131=3.5740 larger than the ratio
2.4544. In the cases of 22.5 deg and 33.75 deg, the two values are
6.6420 and 1.6684 with 6.6420 /1.6684=3.9811, and 6.3158 and
1.4168 with 6.3158 /1.4168=4.4578, which are also larger than
the ratio �4.7 /3�2=2.4544. Physically, this conclusion describes
the energy release due to the defect expansion �20� or the change
of the defect-configuration from two cracks to one complicated
defect.

3 Dependence of the Critical M-Integral Value on the
Two Cracks Orientations

In order to clarify whether MC, as proposed by Chang and
Chien �16�, is a critical material constant for a brittle material with
many cracks, in this section we deal with the possible dependence
of the critical M-integral value on the two cracks orientation under
monotonically increasing loadings. According to the classical ma-
terial strength theory, the critical tensile loading at the coalescence

Fig. 4 Finite element meshes before coalescence of the two
cracks for the four orientation angles „a… 11.25 deg, „b… 22.5
deg, „c… 33.75 deg, and „d… 45 deg

Fig. 5 Finite element meshes after coalescence of the two
cracks for the four orientation angles „a… 11.25 deg, „b… 22.5
deg, „c… 33.75 deg, and „d… 45 deg
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of two cracks for each of the four orientation angles: 11.25 deg,
22.5 deg, 33.75 deg, and 45 deg, respectively, as listed in Table 3,
under which the maximum hoop stress at the red marks in Figs.
7�a�–7�d� reaches the material strength of 40 MPa. Also, the cal-
culated values of the critical value of the M-integral for each of
the four angles are also listed in Table 3.

It is seen from Table 3 that the values of the critical M-integral
for the four orientation angles are quite different and the values of
the critical tensile loading are quite different either. For example,
the minimum critical value of the M-integral is approximately
2.8784 N at 45 deg, whereas the minimum critical value of the
tensile loading is approximately 3.8367 MPa at 11.25 deg corre-
sponding to the two cracks nearly perpendicular to the tensile
loading direction �see Fig. 2�. Obviously, the critical M-integral
value does depend on the two cracks orientation as the angle �
varies. It is concluded that during coalescence between the two
cracks the critical value of the M-integral is configuration-
dependent and there is no correspondence between the critical
values of the M-integral and the critical values of the tensile load-
ing when the orientation angle � varies.

What is more, Table 4 shows the critical value of the M-integral
and the critical tensile loading at final failure of the strip after
coalescence. It is seen that these two parameters, i.e., the critical
value of the M-integral and the critical tensile loading, are also
quite different when the angle � varies. Of great interest is that
there is always a jump of the M-integral from coalescence to final

failure. Table 4 indicates that the jump is 8.6577, 6.0517, 3.4567,
and 2.9213�10−4 N for 11.25 deg, 22.5 deg, 33.75 deg, and 45
deg, respectively, implying that the maximum jump of the
M-integral occurs at 11.25 deg. It is concluded that the critical
value of the M-integral at coalescence or at final failure is always
configuration-dependent. In other words, the damage evolution
and the complete failure mechanism of a brittle material with
many defects cannot be governed by a single parameter MC as
proposed by Chang and Peng �17�. Rather, some defect-
configuration parameters should be introduced to modify the ap-
parent dependence on the defect-configurations and damage evo-
lution.

It should be noticed in Table 4 that after coalescence the mini-
mum of the M-integral occurs at orientation angle of 45 deg and
the minimum of critical tensile loading is at the angle of 45 deg,
too, whereas both maximum critical values of the M-integral and
the tensile loading are at 11.25 deg. Thus, an approximate equiva-
lence between the critical value of the M-integral and the critical
hoop stress seems existent after coalescence. However, to the au-
thors’ knowledge, this might not always be coincidental in gen-
eral. In fact, after coalescence the two cracks for each of the four
orientation angles 11.25 deg, 22.5 deg, 33.75 deg, and 45 deg
become a single complicated defect. From the phenomenological
point of view, the four kinds of the induced complicated defects
are quite different �see Figs. 7�a�–7�d�� and could not be com-
pared to each other �just as the critical values of the M-integral for

Fig. 6 Finite element analyses for the maximum von-Mises stress along the two cracks „red points… before coalescence for
the four orientation angles „a… 11.25 deg, „b… 22.5 deg, „c… 33.75 deg, and „d… 45 deg
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a hole and for a crack in an infinite plane could not be compared
to each other�. It is well-known that the physical meaning of the
M-integral is the energy release due to the defect expansion �20�
and then the critical values of the M-integral after coalescence for
each of the four orientation angles 11.25 deg, 22.5 deg, 33.75 deg
and 45 deg should represent the energy release due to the unit

expansion of the induced complicated defects. Obviously, the dif-
ferent defects formed after coalescence yield quite different ex-
pansion paths in a large region of the strip �just as the kinking or
branching of a single inclined crack under a tensile loading�. At
present, generally speaking, it cannot be ensured that the critical
values of the M-integral in other cases with many microcracks
after coalescence are still corresponding to the critical values of
the maximum hoop stress at final failure as shown in Table 4.
Moreover, this again verifies that the final failure could not be
governed by a single parameter MC.

Now, let us study the relationship between the M-integral and
the change of the total potential energy for each of the four ori-
entation angles of the two cracks as the coalescence path varies or
the angle � varies �i.e., 10 deg, 20 deg, and 30 deg� with respect to
the connecting straight line, respectively. The calculated values of
the M-integral under 3 MPa tensile loading �before coalescence�
are listed in Table 5. It is seen from Table 5 that the numerical
accuracies are very good, always with some relative errors less
than 0.5%, which conform a good agreement between the
M-integral and twice the CTPE denoted by U. It is found from
Table 5 that the inclined coalescence paths have little influence on
the values of the M-integral or CTPE, which could be neglected.
This indicates that the M-integral as being equivalent to the CTPE
presents a phenomenological or outside variable feature regardless
of the detailed coalescence paths of the two small cracks. Thus,
the results obtained above are confirmed again without any doubt.

Fig. 7 Finite element analyses for the maximum von-Mises stress along the crack „red points… after coalescence for the
four orientation angles „a… 11.25 deg, „b… 22.5 deg, „c… 33.75 deg, and „d… 45 deg

Fig. 8 Four typical closed paths for calculating the M-integral
before or after coalescence between the two cracks: „a… paths 1
and 2 are within the PMLA material and „b… paths 3 and 4 are in
an imaginary material with infinite small Young’s modulus out-
side the PMLA material
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Moreover, the calculated values of the M-integral and twice the
CTPE for the four orientation angles 11.25 deg, 22.5 deg, 33.75
deg, and 45 deg, are respectively plotted in Figs. 9–12, where a
jump always occurs in each figure at which the maximum hoop
stress around the two cracks tips reaches the material strength �40
Mpa� and the coalescence between the two cracks occurs. Physi-
cally, this jump represents the energy release during coalescence
as a special kind of defect expansion �22�. It is concluded that the
curves of the M-integral coincide well with those of twice the
CTPE whenever the coalescence occurs or not. In other words,
during the damage evolution, this inherent relation still holds al-
though both the M-integral and the CTPE have a jump during
coalescence. Perhaps, the jumps of the M-integral before and after
coalescence may not be important in the monotonically tensile
loading cases, but it may be very important in the cyclic tensile
loading cases. Indeed, under the cyclic tensile loading the stress
concentration points after coalescence are quite different from
those before coalescence and so does the M-integral. It is con-
cluded that the critical values of the M-integral for the four ori-
entation angles are quite different as shown in Table 1 �before
coalescence� and Table 2 �after coalescence�, imply that the criti-
cal values are configuration-dependent. In other words, the de-
tailed process of the damage evolution �i.e., the cracks coales-
cence� could not be governed by a single parameter MC as
proposed by Chang and Chien �16�.

It can be imagined that the present investigation provides a
useful experimental technique to measure the values of the
M-integral for a damaged brittle material before, during, and after
damage evolution. That is, instead of directly measuring the
M-integral in which a number of strain gages should be placed on
a specimen �18�, we can measure another parameter CTPE before,
during, and after damage evolution without the use of the gages.

4 Relation Between the M-Integral and the Reduction
of Effective Elastic Moduli

This section deals with the inherent relation between the
M-integral and the reduction of the vertical effective elastic
modulus due to the two cracks. Calculated values of the
M-integral and the calculated values of the vertical effective elas-
tic modulus against the orientation angle of the two cracks, �,
before and after coalescence are given in Tables 3 and 4, respec-
tively. Here, the vertical effective elastic modulus is calculated by
Eeffect= �̄ / ��h /h� with �̄ and �h denoting the average tensile
stress and the average displacement along the top side of the strip

as shown in Figs. 2 and 3 and listed in Tables 3 and 4. It is seen
in Tables 3 and 4 that the values of the M-integral just show
apparently opposite features to those of the reduction of the ver-
tical effective elastic modulus when the orientation angle varies.
Indeed, before coalescence the maximum value of the M-integral
occurs at 11.25 deg, whereas the minimum value of the vertical
effective elastic modulus also occurs at 11.25 deg, which corre-
sponds to the largest reduction of the modulus against the orien-
tation angle. What is more, the minimum value of the M-integral
occurs at 45 deg as shown in Table 3, whereas the maximum value
of the vertical effective elastic modulus also occurs at 45 deg,
which corresponds to the smallest effective modulus reduction
against the orientation angle. Table 4 shows the same conclusion
as Table 3. That is, the larger the M-integral is, the smaller the
vertical effective elastic modulus is or the larger the reduction of
the effective elastic modulus is.

It is seen that the modulus differs only in the sixth digit in
Tables 3 and 4 when the orientation varies but the M-integral
differs quite remarkably with a precision 0.5% as mentioned
above. This is because the damage region induced from the two
cracks �whenever coalescence occurs or not� is merely around 200
µm and then yields very small reduction of the effective elastic
modulus of the strip with 27 mm width, whereas the M-integral
represents the energy release induced from the two cracks expan-
sions �20�, which should be much more sensitive than the effec-
tive modulus when the orientation varies. Of course, the meshing
or numerical rounding affects the results should be addressed. We
have used both the fine free mesh and the mapped mesh to address
the numerical rounding affects on the results. The relative errors
could be evaluated and controlled by doubling the free mesh for
each of the four orientation angle, which can be automatically
induced from the ANSYS program without any difficulty.

Here, an explanation should be given as why the M-integral has
a precision of 0.5% and the effective elastic modulus has a preci-
sion of 10−7. This is because the output for a plane elastic problem
using the ANSYS program is the displacements at all nodes from
which the stresses at any point can be calculated by strains from
the partial differential methods. Thus, another approximate tech-
nique such as the central difference method from the displace-
ments at the neighborly located nodes around the point needed is
involved in the ANSYS program. As well-known, the relative errors
of the node displacements can be easily controlled by doubling the
finite element mesh, whereas the relative errors of the stresses or
strains should depend on the approximate technique �e.g., the cen-
tral difference method�. From the error analysis point of view, the

Table 1 Calculated values of the M-integral and the CTPE under 3 MPa along the four different
closed paths before coalescence

Orientation
angle �
�deg�

M�10−4 J /m�
along path 1

M�10−4 J /m�
along path 2

M�10−4 J /m�
along path 3

M�10−4 J /m�
along path 4

Mavg�10−4 J /m�
average value 2U�10−4 J /m�

11.25 1.8909 1.8825 1.8737 1.8835 1.8827 1.9131
22.5 1.6693 1.6666 1.6709 1.6753 1.6705 1.6684
33.75 1.3894 1.3900 1.3855 1.3861 1.3878 1.4168
45 1.1494 1.1456 1.1443 1.1441 1.1459 1.1705

Table 2 Calculated values of the M-integral and the CTPE under 4.7 MPa along the four differ-
ent closed paths after coalescence

Orientation
angle �
�deg�

M�10−4 J /m�
along path 1

M�10−4 J /m�
along path 2

M�10−4 J /m�
along path 3

M�10−4 J /m�
along path 4

Mavg�10−4 J /m�
average value 2U�10−4 J /m�

11.25 6.7692 6.7886 6.7588 6.7803 6.7743 6.8373
22.5 6.5744 6.5922 6.5632 6.5837 6.5784 6.6420
33.75 6.2487 6.2646 6.2365 6.2559 6.2514 6.3158
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precision of the node displacements is always much higher than
the stresses or strains although the ANSYS program provides a
good technique to ensure the precision of the stresses or strains.
As regards the data of the M-integral and the effective elastic
modulus, the precision the M-integral and the precision of the
effective elastic modulus for the same damage configuration are
quite different. Obviously, the precision of the latter is much
higher than the former because the effective elastic modulus can
be directly calculated from the average node displacements along
the top line of the plane strip and the corresponding tensile load-
ing without any other loss of precision, whereas the precision of
the M-integral not only depends on the selected path but also
depends on the involving special partial differentials, uk,j, �see the
second term on the right hand side of Eq. �1��, i.e., the partial
differentials of the displacements with respect to the coordinates,
which cannot be calculated directly by the ANSYS. Thus, a new
complementary program �e.g., the central difference method from
the displacements at the neighborly located nodes� should be writ-
ten to overcome this obstacle. Of course, during performing this

complementary program, some additional errors should unavoid-
ably be induced. This is the reason as why the calculation of the
M-integral only has a precision 0.5% mentioned above and the
calculation of the effective elastic modulus has a precision 10−7

�see Tables 3 and 4�.
Finally, it should be emphasized that the M-integral shows an

apparent configuration-dependence when the orientation angle �
of the two cracks varies whatever the coalescence between the
two cracks occurs or not. It is proved that the critical value of the
M-integral is not a material constant when the orientation angle �
of the two cracks varies although the M-integral does play an
important role in the microcrack damage evolution. How to use
the M-integral concept in description of the damage stability and
evolution is absolutely important. This topic remains to be further
investigated.

5 Conclusions and Remarks
After performing the above numerical analyses, we summarize

the following conclusions:

�1� The M-integral plays an important role in description of the
damage evolution in brittle materials, for example, the
cracks coalescence in brittle materials. Under a monotoni-
cally increasing loading, damage evolution always in-
creases the value of the M-integral. For example, there is a
jump of the M-integral when coalescence of the two cracks
in a plane strip occurs.

�2� The present investigation reveals that the M-integral can
provide some outside variable features, called as the out-
side variable theory, for damaged brittle materials, which
might open a new technique or framework to evaluate ma-
terial damage evolution. Unlike those of the inner variable
theory �e.g., the effective elastic moduli theory�, the outside
variable theory established here and in Chen’s �8,9� works
provide some phenomenological features of damage and
damage evolution in brittle materials.

�3� An inherent relation between the M-integral and the reduc-
tion of the effective elastic moduli exists when the orienta-
tion angle varies before and after coalescence. That is, for a
certain multiple defects configuration, the larger the
M-integral is, the larger the reduction of the effective elas-
tic moduli is, whenever the damage evolution occurs or
not! When the damage evolution occurs, both the
M-integral and the reduction of the effective elastic moduli
increase synchronously.

Fig. 9 The calculated curves of the M-integral and CTPE de-
noted by 2U for the angle 11.25 deg of the two cracks before
and after coalescence

Fig. 10 The calculated curves of the M-integral and CTPE de-
noted by 2U for the angle 22.5 deg of the two cracks before and
after coalescence

Fig. 11 The calculated curves of the M-integral and CTPE de-
noted by 2U for the angle 33.75 deg of the two cracks before
and after coalescence
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�4� The major obstacle is that the critical value of the
M-integral is not a material constant when the orientation
angle varies before and after coalescence. In other words,
even in the present single axis tensile problem, the detailed
damage evolution cannot be governed by a single param-
eter MC. Rather, it is critical value shows an apparent
configuration-dependence when the orientation angle var-
ies. For example, the critical value depends on the relative
locations and orientations of the two cracks although it

does not depend on the detailed coalescence path connect-
ing the two cracks. Some modifications are needed to com-
bine both the outside variable features and the inner vari-
able features.

�5� The M-integral is inherently related to the change of the
total potential energy for a damaged brittle material regard-
less of the detailed damage feature �i.e., the defect configu-
rational independence�. Therefore, this provides a useful
and convenient experimental technique to measure the val-
ues of the M-integral for a damaged brittle material from
initial evolution to final failure without use of the so-called
nondestructive evaluation method proposed by King and
Herrmann �18� with many strain gages. Detailed experi-
mental data will be given in sequel.
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A Slip Damping Model for Plasma
Sprayed Ceramics
Ceramic materials applied by air plasma spray are used as components of thermal
barrier coatings. As it has been found that such coatings also dissipate significant
amounts of energy during vibration, they can also contribute to reducing the amplitude of
resonant vibrations. In order to select a coating material for this purpose, or to adjust
application parameters for increased dissipation, it is important that the specific mecha-
nism, by which such dissipation occurs, be known and understood. It has been suggested
that the dissipative mechanism in air plasma sprayed coatings is friction, along inter-
faces arising from defects between and within the “splats” created during application. An
analysis, similar to that for the dissipation in a lap joint, is developed for an idealized
microstructure characteristic of such coatings. A measure of damping (loss modulus) is
extracted, and the amplitude dependence is found to be similar to that observed with
actual coating materials. A critical combination of parameters is identified, and varia-
tions within the microstructure are accounted for by representing values through a dis-
tribution. The effective or average value of the storage (Young’s) modulus is also devel-
oped, and expressed in terms of the parameters of the microstructure. The model appears
to provide a satisfactory analytical representation of the damping and stiffness of these
materials. �DOI: 10.1115/1.3132182�

Keywords: mechanical properties of materials, damping, friction

1 Introduction
As typically used, the term internal friction is an inclusive term

for all types of material damping, regardless of mechanism. How-
ever, there appear to be cases in which the mechanism of material
damping is truly the Coulomb friction, as in contacts at grain
boundaries or in materials constructed from unbonded aggregates.
In some cases, the energy dissipation due to frictional losses may
be significant. One such case appears to be the dissipation arising
in plasma sprayed ceramics as a consequence of relative motion
within and between the “splats” resulting from the spraying pro-
cess.

A distinction should be made between two classes of dissipa-
tion due to friction. In the first, the contacting bodies are taken to
be rigid, and the same relative displacement is assumed over the
entire contact surface. This is referred to as gross slip, sliding, or
macroslip damping. In the second class the relative displacement
of the contacting bodies varies over the contact region. This type
of dissipation due to friction is referred to as partial slip, mi-
croslip, or slip damping. While either type can dissipate large
amounts of energy, both are subject to such limitations as the
dependence on an interfacial contact pressure that may be difficult
to evaluate or regulate, and the propensity toward fretting and
wear.

In the case of sliding or macroslip damping, the relative dis-
placement across the interface is either zero or the same for all
locations in the contact region between two rigid bodies. The en-
ergy dissipated per cycle of vibration is proportional to the prod-
uct of the amplitude and the frictional force.

In the case of slip or microslip damping, the deformation of the
contacting surfaces enables the relative displacement between cor-
responding points across some or the entire interface to vary with
the location. A general characteristic of systems incorporating slip
damping treated as local Coulomb friction is that the energy dis-
sipated per cycle varies as the third power of the amplitude of the

alternating load, and inversely as the interfacial shear stress. The
stronger dependence on amplitude occurs because the slipping
region itself increases with the level of load. Analyses have been
given for the response of contacting spheres to an oscillating tan-
gential force or to a torque about the common diameter �1�. The
slip damping generated between a beam and a spar cap �2� and in
the lap joint in tension �3� has also been evaluated. The dissipation
due to partial debonding of a laminate �4� is also of this class. A
thorough discussion of slip damping has been provided by Good-
man �5�.

Coulomb friction has also been assumed in the related problem
of determining the length of the slipping region at the fiber-matrix
interface when a crack impinges on the interface. Some deficien-
cies have been noted. These include that plasticity is neglected
�6�, that tension and compression are not symmetric �7�, and that
repeated cycling may change the interfacial shear stress �8�. The
hysteresis loops predicted for cyclic loading in a composite with
Coulomb friction at the fiber matrix interface have also been com-
pared with experiment �8�, but the energy dissipated was not
evaluated.

A characteristic force-displacement relationship for a system
with slip is shown in Fig. 1. Loading from the undeformed state
proceeds along the trajectory o-a, with the onset of gross slip at
a�. The initial response may be linear or nonlinear, depending on
whether the slip begins immediately or at some critical load. A
nonlinearity indicates that the specimen is changing in stiffness as
slip progresses. If the loading direction is reversed at a�a�, un-
loading occurs along a-o�-b. If the loading direction is reversed at
b and then reloaded through b-0�-a, a hysteresis loop is formed;
the enclosed area of which represents the net work done over the
cycle, i.e., the energy dissipated.

2 Damping Characteristics of Plasma Sprayed Ceram-
ics

Recently, there has been a high level of interest in the inherent
damping of plasma sprayed ceramics such as alumina, stabilized
zirconia, or magnesium-aluminate spinel, when applied as thin
coatings to the blades of turbine engines, as components of ther-
mal barrier coatings. A number of studies have shown that the

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received July 18, 2008; final manuscript
received April 3, 2009; published online July 27, 2009. Review conducted by Mat-
thew R. Begley.

Journal of Applied Mechanics NOVEMBER 2009, Vol. 76 / 061018-1Copyright © 2009 by ASME

Downloaded 04 May 2010 to 171.66.16.45. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



damping of such materials increases approximately linear with
strain to a critical value �usually 100–200 ppm of interfacial
strain� and then remains constant, or diminishes �9�.

The splats resulting from the plasma spray process lead to a
coating, having internal structure, with the splat orientation nomi-
nally parallel to the substrate. Shipton and Patsias �10� examined
the microstructure of the plasma sprayed magnesium aluminate
spinel by optical and scanning electron microscopy, and found a
large population of vertical defects within the splats. The resultant
structure �Fig. 2� of the subdivided splats was found to be analo-
gous to an array of ordered parallel sided blocks, of which the

thickness and length appear to be only a few micrometers. Fric-
tion arising from relative displacements at such interfaces was
suggested as the damping mechanism in these materials. This hy-
pothesis was supported by the observation that a spray orientation
normal to the substrate led to an improved alignment of interfaces
with the axis of strain, and to a higher level of damping. Experi-
ments simulating a coated beam by a vibrating beam with seg-
mented and overlapping cover plates showed a dependence of
damping on amplitude similar to that observed for coated beams,
as did a computer based simulation employing springs and Cou-
lomb sliders �11�.

The most relevant measure of the energy dissipation of a mate-
rial to be used as a thin coating is the loss modulus, E�, related to
the energy dissipated, D, by a unit volume undergoing a fully
reversed cycle of strain amplitude, �0, by

E���0� =
D��0�
��0

2 �1�

Values of the material loss modulus extracted from tests are
shown in Fig. 3. Values for four specimens of a titania-alumina
ceramic �Fig. 3�a�� were extracted from the frequency response
functions of a base driven cantilever beam, with successively re-
duced amplitudes of excitation �12�. Values for the loss modulus
of yttria stabilized zirconia �Fig. 3�b�� are the product of loss
factor and storage modulus, as obtained from the decay of free
vibrations �13�. Values obtained with electron beam deposition
�Fig. 3�b�� differ markedly, both quantitatively and qualitatively,
from those obtained when the same material was plasma sprayed.
Tassini et al. �13� suggested that the structure of plasma sprayed
ceramics enabled more relative movement in the loading direction
than did the columnar structure obtained with electron beam depo-
sition. This was seen to be consistent with the lower values of
storage �Young’s� modulus that was also observed.

Although the maximum value of the loss modulus and the strain
at which it occurs differs between the two materials, the amplitude
dependencies are very similar, at least to a strain of twice for that
for maximum damping. In both cases, the loss modulus is seen to
rise proportionate to the strain amplitude from a low level, sug-
gesting the presence in the coating of a loss mechanism that is
linear in applied load. Further, the effectiveness of this mechanism
reaches a limit value at some critical value of load �strain�, above
which the loss modulus decreases. Increases at higher strains
�when present� are presumed to be indicative of the predominance
of some other amplitude dependent mechanism. Values of the loss
modulus for plasma sprayed ceramic materials, as extracted from
other data �9�, show similar trends.

3 A Simplified Analysis of Slip Damping
As the microstructure seen in Fig. 2 is suggestive of a laminated

material with partial debonding due to vertical cracks in one of the

Fig. 1 Force-displacement hysteresis loop with partial slip

Fig. 2 Microstructure of plasma sprayed MgAl spinel „by Ship-
ton and Patsias †10‡; used with permission…

Fig. 3 Loss modulus for ceramic-coatings: „a… plasma sprayed titania-
alumina and „b… 8% yttria stabilized zirconia
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constituents, a refinement of an analysis previously developed �4�
for the evaluation of the resulting damping, due to friction, may
be applied. Let the length 2� of Fig. 4�a� be taken as being the
representative of the distance between the vertical intrasplat de-
fects, and length 2t1 to be the characteristic of the distance be-
tween horizontal inta-splat defects, with the resulting block being
separated vertically from a similar configuration by a characteris-
tic distance 2t2. The vertical plane of symmetry enables the isola-
tion of the unit cell of length � and thickness t1+ t2, as shown in
Fig. 4�b�. As relative motion develops only across a load-
dependent fraction of the plane separating the two constituents
over a length � from the free end of constituent 2, the phenom-
enon is one of the microslips.

Unless an identical slipping plane occurs at z=−2t2, the plane at
z=−t2 is not truly a plane of symmetry. Additional deformations
arising from any resulting shear distribution on this plane are ne-
glected, and the existence of a transverse pressure p, necessary to
generate a uniform Coulomb frictional force �=�p, over the slip-
ping region, is presumed. The total load F, carried by a width W
of the unit cell is divided between the two constituents. At any F,
the load must be divided among the two constituents so as to
ensure the same axial strain in the nonslipping region. Thus, the
fraction of the load transferred from constituent 2 to constituent 1
over the nonslipping region is RF, where R is a stiffness ratio

R =
E1t1

E1t1 + E2t2
�2�

3.1 Initial Loading. At any load F�0, slip occurs over some
interval 0�x��, measured from an origin of coordinates at
�moving� point 0. Over �−��x�0, the two constituents adhere,
and displacements and strains must be the same in both constitu-
ents. If the shear stress is uniform over the slipping region, the
load transferred over the length � must be �W�=RF. The length
of the slipped region as shown in Fig. 4�b� at a final load F
=Fmax is therefore

�F = RFmax/��W� �3�

For a uniform shear force per unit width q=�W, the resulting
linear variation in axial load may be used to evaluate the displace-
ments ua at the loaded end of constituent 2, with respect to the
plane of symmetry. Since the displacement over an interval 	 with
linear variation is the length 	, times the mean axial force, di-
vided by a stiffness, B=WE2t2. The result is that

ua = �1 − R�F
�� − ��

B
+

�F + �1 − R�F�
2B

� �4�

For loading to F�Fmax, at which load the slipped distance �F
=
� with 0�
�1 does not exceed the half length of the distance
between gaps in the interrupted constituent of Fig. 4�a�, since the
slip penetration depth � is related to the load F, the displacement
is

ua =
�RFmax�2

2Bq
�2

�1 − R�
R


F

Fmax
+ � F

Fmax
�2� �5�

3.2 Unloading. The load distribution for the two constituents
at the end of the loading phase is shown as the dashed line of Fig.
5. If, at a load Fmax, the load is reduced to F�Fmax, reverse slip
begins at the end x=�F and propagates to a depth �F-� along the
interface to the point x=�, also shown in Fig. 5. As the two sur-
faces remain in adherence for x�0, the load transferred to con-
stituent 1 must be reduced from the value of RFmax at the end of
the unloading to the new value RF. Thus

2�W��F − �� = R�Fmax − F� �6�

and the distribution of axial loads in the two constituents during
unloading is shown as the solid lines in Fig. 5. The factor of two

Fig. 4 Unit cell for material with microslip „a… location of unit cell and „b… detail of unit
cell

Fig. 5 Distribution of axial forces; loaded and unloading „a… constituent 1 and „b… con-
stituent 2
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arises as the initial distribution of shear must be first reduced to
zero, and then further reduced to the negative value.

The displacements at the loaded end of constituent 2, with re-
spect to the plane of symmetry, may be evaluated by noting that
the ordinate divided by the stiffness B, is a strain. Consequently,
the desired displacement at load F is the area under the heavy line
of Fig. 5�b�, divided by B. But, from Eqs. �3� and �6�, the total
penetration depth �F and the current value �, are related to the
maximum and current values of the load. Making these substitu-
tions, and simplifying

ub =
R2Fmax

2

2Bq
��1 +

2�1 − R�

R

� F

Fmax
+

1

2
�1 − � F

Fmax
�2�� �7�

When the unloading reaches a value F=�Fmax with −1���1,
the reversed slip has taken place to the position determined with
Eq. �6�

�� =
RFmax

2q
�1 + �� �8�

With unloading to F=0 �i.e., �=0�, reversal of slip occurs only on
the first half of the original penetration depth �F. At F=−Fmax,
reversal occurs over the entire length �F.

3.3 Reloading. At the end of the unloading cycle F=�Fmax,
the force in constituent 2 is as shown in the dashed line of Fig. 6.
If the loading direction is then reversed and the load is increased,
the slip direction is reversed over an interval of distance �F−�,
measured from the free end of the interrupted layer, and the loads
become as in the heavy line.

For 0�x��, no slip occurs. Once again, the change in shear
force acting on the interrupted layer must be such as to insure that

the strain in the two constituents is the same for x�0. Thus, for
any load �Fmax�F�Fmax, the slip penetration depth �, is found
from

2�W��F − �� = R�F − �Fmax� �9�

� =
�� + 2�RFmax − RF

2q
�10�

The displacement of the loaded end of constituent 2, with respect
to the fixed end, is once again the area under the solid line of Fig.
6, divided by B. By using Eqs. �3�, �8�, and �10� to evaluate the
several slip penetration depths in terms of forces, this may be
reduced to

uc =
�RFmax�2

2Bq
�2�1 − R�

R


F

Fmax
+

�1 + 2��
2

− �� F

Fmax
� +

1

2
� F

Fmax
�2�
�11�

4 Energy Dissipation Due to Slip

4.1 Hysteresis Loop Areas. Having found the displacements
at the point of load application, hysteresis loops may be formed,
as shown in Fig. 7, and the dissipated energy is evaluated from the
area. Hysteresis loops shown are the computed values for 
=0.9
and R=0.5.

The ordinates are the ratio F /Fmax and the abscissas are a di-
mensionless displacement, obtained by normalizing the common
first factors of Eqs. �5�, �7�, and �11�. The displacement response
of Eq. �5� for initial loading to F=Fmax, is shown as the heavy line
in Fig. 7�a�. The hysteresis loop for a fully reversed cycle as
formed with ub, the displacements of Eq. �7� for the unloading on
F=−Fmax, ��=−1�, followed by uc, and the displacements for
reloading to F=Fmax, ��=−1�, is also given. The reloading curve
is seen to asymptotically approach the initial loading trajectory.
The hysteresis loops resulting from unloading from F=Fmax to
F=0, ��=0�, and then reloading to F=Fmax, are compared in Fig.
7�b� with that of the unloading to −Fmax, ��=−0.5�, and reloading.
The reloading curve does not reach the initial loading curve �Fig.
7�a�� until F=Fmax. It is evident that the energy dissipated �area�
is much less than for the fully reversed load. As will be seen, the
value for load range of N units is N3 times that for a load range of
one unit.

The energy dissipated in a complete cycle from Fmax through
�Fmax with return to Fmax, may be found by integrating the area
within the hysteresis loop as

Fig. 6 Load distribution in constituent 2, before and during
reloading

Fig. 7 Hysteresis loops with partial slip „a… initial loading; fully reversed load and „b…
partially reversed loads
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DT =	
�Fmax

Fmax

�ub − uc�dF = Fmax	
�

1

�ub − uc�d� F

Fmax
� �12�

Subtracting the reloading displacement of Eq. �11� from those for
unloading in Eq. �7� and integrating leads, after considerable ma-
nipulation, to

DT =
R2

12Bq
�Fmax − �Fmax�3 �13�

It is of considerable interest and significance that the dissipation
depends only on the total load range, and is independent of the
mean value. As noted in previous investigations of slip damping,
the dissipation is dependent on the third power of the load range,
and inversely as the interface shear. In this analysis, it was as-
sumed that the ends of constituent 1 remain unloaded. If the in-
terruption in this layer closes during compression, less slip and
less dissipation will be the result. For an initial gap of zero thick-
ness, opened under the initial loading, the load at which closure in
unloading occurs depends on the parameter R, but typically occurs
at about �=−1 /2.

4.2 Dissipation With Partial Slip. The unit damping D, as
formed by dividing the energy dissipated DT, by the volume of the
unit cell W��t1+ t2�, for a fully reversed cycle ��=−1�, of cyclic
stress amplitude �0=Fmax /W�t1+ t2�, becomes

D =
DT

W��t1 + t2�
=

2

3
� E1�t1 + t2�

E1t1 + E2t2
�2 1

E2�
��0�3 t1

2

�t2
�14�

If the unit cells within which the slip occurs represent, on average,
a volume fraction Vf of the total material, the average value of the
unit damping becomes DVf. A loss modulus based on the nominal
amplitude of maximum strain �0=�0 /E� may then be constructed.
If the two constituents of the unit cell have the same modulus
E1=E2=E

E���0� =
D��0�

���0/E��2Vf =
2

3�
� t1

2

�t2
�E�2

�E
Vf�0 �15�

The effective modulus E�, is a secant modulus for the material at
a cyclic stress of amplitude �0, and, in general, will differ from
the moduli of the constituents and diminish with increasing ap-
plied stress due to the slip-induced lowering of stiffness. Thus, Eq.
�15� is consistent with the nearly linear increases at low strains
seen in Fig. 3. A development of the relationship between the
effective modulus E� and the properties of the unit cell is given in
the Appendix.

But the use of Eqs. �14� and �15� is subject to the restraint that
the initial penetration depth is less than the half length of the
interrupted segment �F��. Thus it is required that the product of
the Coulomb friction coefficient � and the normal pressure p on
the interface be such that slip does not occur over the interface, or

RFmax

�W
=

�0−maxt1

�
� � �16�

The stress, �s, or the corresponding strain, �s=�s /E�, at which
equality is reached, is driven by an aspect ratio, t1 /�, and the
contact pressure, and is a dominant parameter in the analysis of
the energy dissipation due to slip. The value of the loss modulus at
the onset of gross slip is

E���s� =
2

3�
� t1

t2
��E���s�

E
�VfE���s� �17�

Beyond the limiting value, gross or full slip begins, and the in-
stantaneous rate of dissipation must be as the first power of am-
plitude over some portion of the cycle, leading to a constant or
diminishing loss modulus, as seen in the material properties de-
veloped from experimental data, Fig. 3.

This formulation of displacements and evaluation of dissipation
for loads below gross slip is closely patterned after that developed
by Metherell and Diller �3� for the analysis of the lap joint under
uniform pressure.

4.3 Dissipation at Loads Beyond Full Slip. For loads F be-
low full slip, substitution of the slip length �=RF /q into the dis-
placement for the initial loading as given by Eq. �4� and differen-
tiation, gives that

�ua

�F
= �1 − R�

�

B
+

R2F

qB
�18�

and is seen to decrease to � /B at the force for full slip, at which
�=� and Fs=�q /R. For F�Fs, the slope retains the constant
value � /B. The initial loading curve is shown �at exaggerated
scale� as the heavy dashed line of Fig. 8; the loading curve for
F�Fs with dF /du=B /� is the continuation A−A�.

The displacement at initiation of full slip �F=Fs, where RFs
=q�� is from Eq. �4�

ua�Fs� =
Fs�

2B
�2 − R� �19�

and at final load F �point A��

ua�F� =
Fs�

2B
�2 − R� + �F − Fs�

�

B
�20�

For unloading from F�Fs, the force displacement trajectory
A�-C is congruent to AB, the unloading curve from Fs. For a fully
reversed cycle Fmin=−F, unloading continues along C-B-B�, par-
allel to A-A�, and reloading occurs along B�-D-A-A�. Thus, for a
fully reversed loading cycle, the hysteresis loop takes the form
shown in Fig. 8, as the heavy solid line. The total area of the
hysteresis loop is that for the load Fslip �light dashed line of Fig.
8�, plus the additional area of the parallelogram A�-C-B�-D; the
area of which may be evaluated by noting that the area of the
parallelogram is that of two congruent triangles, D-A�-C and
C-B�-D. After dividing by the cell volume

D =
DT

W��t1 + t2�
= 2��0

�s
− 1��s

2 �t1

t2E
�21�

Adding to this the dissipation per unit volume from Eq. �14�,
evaluated at gross slip �0=�s, at which ��=�st1, the total energy
dissipated per unit volume of the unit cell with E1=E2=E is

D = ��2
�0

�s
−

4

3
����s�2 t1

Et2
�22�

from which a loss modulus for a material with a volume fraction
Vf of slipping cells may be formed as before

Fig. 8 Hysteresis loop for loading beyond full slip
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E���0� =
D��0�

���0/E��2Vf = ��2��s

�0
� −

4

3
��s

�0
�2��Vf

�

E���0�
t2E

E���0�

�23�
A maximum value is achieved at 4/3 the stress for the gross slip.
Such maxima are evident in the properties of ceramics, Fig. 3.
Examples of the loss modulus for several values of the thickness
ratio t1 / t2 are shown in Fig. 9, as computed with Eq. �15� for
�0
�s, and from Eq. �23� for �0��s. Values shown are normal-
ized by division, by E�2Vf /E.

An evaluation of the effective modulus E� for loads beyond
gross slip is given in the Appendix. As the ratio �0 /�s is not
identical to the ratio �0 /�s due to the softening of the effective
modulus, the abscissa of Fig. 9 is not simply proportional to that
of Fig. 3.

5 Influence of Variations in Cell Parameters
If an entire volume of material contained a uniform distribution

of identical deflects, the unit dissipation and loss modulus for the
sample would be the same as that computed from the properties of
a single cell. However, variations in such defects may be ex-
pected, as is evident in Fig. 2. Since the density, dimension, and
orientation of defects enabling slip will vary throughout the ma-
terial, a distribution, rather than a single value for the critical
parameters, is appropriate. But the stress at which full slip in the
unit cell first occurs, �s=�� / t1, as computed from Eq. �3� for the
case of equal moduli, is a single parameter dependent on the dis-
tance between the vertical defects, the interfacial shear stress, and
the distance between sliding planes. In consequence, variations in
the slip stress serve as a single surrogate variable for variations in
any or all of these.

An analogous dependence on a stress parameter occurs in the
theory of magnetoelastic damping, for which the dissipation is
taken to vary as the third power of applied stress below a critical
value, and to have a constant value for stresses above. Smith and
Birchak �14� provided a modification to the theory by taking the
internal stress, which governs the transition between one relation-
ship for the dissipation to the other, to be a distribution. Although
the dissipation at high stress in the present case is linear in stress
rather than constant as in magnetoelastic damping, the analysis of
Smith and Birchak �14� may be adapted. We assume that the slip
stress, �s, as used here, is not uniform throughout the material, but
may be represented by a simple �square� distribution, having a
mean value �, with the fraction of elements having slip stress of
various values taken to be

N��s� = constant for �-	� � �s � � + 	� �24a�

N��s� = 0 for all other values of �s �24b�

The distribution may then be characterized by �, and a single
parameter Z=	� /�. The energy dissipated per unit volume in an

“average” unit cell, subjected to a uniform externally applied cy-
clic stress �0, is

D =	 DsN��s�d�s =
1

2	�
	

�−	�

�+	�

Dsd�s �25�

with the values of dissipation from Eqs. �14� and �22�, written in
terms of a geometric parameter �= �2 /3�t1 / t2 and �s=�� / t1

Ds =
�

E
��o

3

�s
� when �0 � �s �26�

DS =
�

E
�3�0�s − 2�s

2� when �0 � �s �27�

But, due to the piecewise representation of the integrand, three
cases must be considered.

Case 1. For 0
�0
�−	�

D =
1

2	�
	

�−	�

�+	�
�

E
��0

3

�s
�d�s �28a�

DE

��0
2 =

1

2Z
��0

�
�ln
1 + Z

1 − Z
� �28b�

Case 2. For �−	�
�0
�+	�

D =
1

2	��	
�−	�

�0 �

E
�3�0�s − 2�s

2�d�s +
1

2	�
	

�0

�+	�
�

E
��0

3

�s
�d�s�

�29a�

DE

��0
2 =

3

4Z
���0

�
� − � �

�0
��1 − Z�2� −

1

3Z
���0

�
� − � �

�0
�2

�1 − Z�3�
+

1

2Z
��0

�
�ln�1 + Z

�0/� � �29b�

Case 3. For �+	�
�0

D =
1

2	�
	

�−	�

�+	�
�

E
�3�0�s − 2�s

2�d�s �30a�

DE

��0
2 = 3� �

�0
� − � �

�0
�2

�2 + 2Z2/3� �30b�

The loss modulus as introduced in Eq. �15� may be computed for
each case as

E2���0� =
D��0�

���0/E��2Vf = � 2

3�

t1

t2

E�

E
E�Vf�� DE

��0
2� �31�

The first factor on the right is recognized as the loss modulus at
the onset of gross slip, Eq. �17�. Values of the loss modulus, after
scaling by this factor, given in Fig. 10, are for several values of
the parameter Z. The abscissa is the ratio of the amplitude of
applied cyclic stress to the mean value of the stresses for the onset
of gross slip. For Z→0, the distribution becomes a singularity, the
slip stress has a unique value, �s=�, and the loss modulus be-
comes that of Fig. 9. Values for Z=0 and Z=0.1 are nearly iden-
tical. For any other value of the ratio Z=	� /�, the maximum
value is reduced and the amplitude dependence is slightly weaker.
It is of interest to note that, in all cases, the magnitude of the loss
modulus does not depend explicitly on the mean slip stress, �, but
only through the stress ratio, �0 /�. The magnitude of the loss
factor near the peak values is dependent on the distribution pa-
rameter, but is relatively insensitive to Z at low and high stress
ratios.

Although the distribution of defect parameters used here is
highly simplistic, it has enabled the capture of the magnitude and
the amplitude dependence of the loss modulus �Fig. 10� with a

Fig. 9 Loss modulus, single cell
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modest number of parameters. The general shape is a function
only of the distribution parameter Z. The stress for maximum
damping is dependent only on the mean slip stress �, and weakly
on Z. The magnitude is additionally dependent on two factors:
One, with a geometric combination �2 /3��Vf�t1 / t2� and the other,
having to do with the effective storage �Young’s� modulus of the
material and the elastic modulus of the constituents.

For the two materials compared in Fig. 3, the loss modulus at
twice the strain for maximum damping is about 15% less than the
peak value. The decreases with strain in the moduli of Fig. 10
diminish with increasing values of the parameter Z. At twice the
stress for peak damping, the loss modulus for Z=0.9 has a value
about 19% below peak. From this, it is inferred that the range of
values of the critical slip parameter �s for actual materials must be
quite broad, perhaps ranging from less than 10% to more than
190% of the mean value.

6 Summary and Conclusions
The energy dissipation in plasma sprayed ceramics has been

previously attributed to friction across interfaces between the
splats resulting from the process of application, enabled by large
numbers of intrasplat cracks, roughly dividing the sprayed mate-
rial into a structure containing slipping blocks. Measures of dissi-
pation, such as loss factors and loss moduli, have been found to
increase with strain at low strains, suggesting microslip damping.
An analysis of the dissipation due to a single slipping block was
developed and applied. At a critical value of applied stress, slip
takes place over the entire block length, and a transition in the
amplitude dependence of the damping measure is seen. As the
value of applied stress at the onset of gross or macroslip is depen-
dent on a combination of parameters of the sliding block, and as a
sample of real material will contain a large number of nonidenti-
cal blocks, a description of the material in terms of a distribution
of the critical stresses required for gross slip of the blocks was
considered. A simple one-parameter distribution was presumed,
and a comparison of predictions with different values of the pa-
rameter suggests that observed values of the damping measure
correspond best to a broad distribution of stresses for the onset of
gross slip.

While the present findings provide some further understanding
of damping in plasma sprayed ceramics, some aspects of the ob-
served behavior are not accounted for by this simple model. In
particular, a dependence on the prior load history on both long and
short term time scales have been noted �13,15�. At some relatively
high level of strain, damage may increase the number and/or the
dimensions of dissipating sites. It is also likely that a single con-
stant value of the Coulomb friction coefficient is not an adequate
representation. For these reasons, values of the critical parameters
may change with the history of loading, leading to a dependence
of the loss modulus on the history of loading. It should also be

noted that the influence of mean stresses were not considered.
Such could influence the interface contact pressure, as well as
negate the assumption that the vertical defects do not close.

Although the slip damping model is highly idealized as to ge-
ometry, the distribution of internal stresses, and the characteriza-
tion of variations in parameters, the predicted damping measures
appear to provide good qualitative agreement with observations.
The success of this model, incorporating both microslip and mac-
roslip in providing qualitative predictions of the amplitude depen-
dence of the dissipation, leads further support to the hypothesis of
Shipton and Patsias �10�, that the damping of plasma sprayed
ceramics is predominantly a frictional phenomenon.

Nomenclature
B � stiffness of constituent 2, E2t2W

D��0� � unit damping, energy dissipated per cycle per
unit volume

E1 ,E2 ,E � storage �Young’s� modulus of cell constituents
E���0� ,E���0� � storage �Young’s� and loss modulus for mate-

rial with microslip
F ,Fs ,Fmax � forces on unit cell

R � stiffness ratio
DT � total energy dissipated per cycle
Vf � volume fraction of slipping cells
W � width of unit cell
p � normal pressure on interface
q � shear force on interface, per unit length, �W

t1 , t2 � thickness of constituents of unit cell
ua,ub ,uc � displacement of constituent 2

x ,z � spatial coordinates
� ,�a ,�F � length of slip region at various loads

� � mean value of stresses for gross slip
Z � distribution parameter
� � force ratio during cycle: minimum/maximum

 � dimensionless slip penetration depth, � /�
� � half-length of unit cell
� � coefficient of Coulomb friction
� � mean value of stresses for gross slip

�0 ,�0 � average stress and strain in material with
microslip

�s ,�s � average stress and strain at gross slip
� � shear stress on interface, �p

Appendix
The Storage Modulus. The effective or average value of the

storage modulus E���0�, must vary with the amplitude of the ap-
plied load, as strain softening will occur in consequence of slip at
the interfaces. An amplitude dependent secant modulus for the
unit cell, defined as the ratio of the average stress to the average
strain E0�=�0 /�0, may be evaluated from the relationships for dis-
placement for constituent 2. The displacement prior to gross slip is
given as Eq. �4�. The average strain is �0=ua /�; the force is
related to the average stress �0 by F=�0W�t1+ t2�. The average
stress at gross slip is �s=�� / t1. Using these, the result for equal
moduli E1=E2=E and �0
�s is

E

E0�
= 1 +

t1

2t2

�0

�s
�A1�

Beyond the gross slip, additional displacements occur. The total
displacement for loads beyond the gross slip �Eq. �20�� may be
used to find the relationship between the average stress and the
average strain. From that ratio, the secant modulus beyond gross
slip becomes

Fig. 10 Influence of distribution parameter on loss modulus
„a… computed from a slip model, and „b… observed, titania-
alumina ceramic
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E

E0�
= 1 + �1 −

1

2

�s

�0
� t1

t2
�A2�

But in general, the properties of all slipping unit cells are not
identical. A distribution of parameters may be considered, as done
in the evaluation of the loss modulus. Applying the distribution of
Eq. �24� to the values of storage modulus for the unit cell below
and above the gross slip, Eqs. �32� and �33� leads to the estimates
of the storage modulus for the unit cell for any specific value of
the geometric parameters t1 / t2 and Vf, and any specific value of
the distribution parameter Z.

But slip may not be occurring in every volume element of
width W, length �, and thickness t1+ t2. If some length L=M�
contains only one slipping block, the ratio of average stress to
average strain for the array in the series may be used to determine
the effective modulus of that array, in terms of that of the unit cell,
with the result that

E

Ea�
= �1 −

1

M�1 −
E

E0�
� �� �A3�

Then, if such a line of blocks with one slipping element is sur-
rounded by N2−1 rows of the same length, but with no slipping
blocks, the effective modulus of the MN2 blocks with one slipping
element is found to be

E�

E
= 1 + Vf�1 −

E

E0�
� �/�1 − �1 −

E

E0�
� �/M� �A4�

The volume fraction is now Vf =1 /MN2. The case of N=1 and
Vf =1 /M corresponds to all blocks in series; parameters M =1 and
Vf =1 /N2 correspond to all blocks in parallel. These limiting cases
provide bounds on the stiffness.

The examples given in Fig. 11 were computed from Eq. �35�
after evaluating the influence of the distribution of Eq. �24� on the
properties of the unit cell. Values shown were found for the arbi-
trary choices of Vf = t1 / t2=0.5 and N=M, with values of the dis-
tribution parameter Z corresponding to narrow �Z=0.1� and broad
�Z=0.9� distributions.

Values of the storage modulus for two specimens of an actual
ceramic coating, as computed from data given elsewhere �12�, are
shown in Fig. 11�b�. The computed results for the broad distribu-
tion �Z=0.9 of Fig. 11�a�� have greater curvature for low values of
�0 /�, and therefore, are more representative of the real material,

as also suggested by comparisons of the loss modulus. When used
with such a broad distribution, the slip model for the plasma
sprayed coating material appears to provide a satisfactory charac-
terization of the influence of slip on the stiffness �storage modu-
lus� of the material.
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This technical brief deals with the surface instability mode of a
liquid film flowing down an inclined plane. A four-equation model
that describes the development of the film depth, the flow rate, the
free-surface velocity, and the wall shear stress is proposed. The
obtained results were found to be in very good agreement with
experimental and theoretical results of Liu et al. (1993, “Mea-
surements of the Primary Instability of Film Flow,” J. Fluid
Mech., 250, pp. 69–101) and Brevdo et al. (1999, “Linear Pulse
Structure and Signalling in Film Flow on an Inclined Plane,” J.
Fluid Mech., 396, pp. 37–71). �DOI: 10.1115/1.3114968�

1 Introduction
Research on thin liquid films flowing along inclined planes or

vertical cylinders date back to Nusselt �1�. Since Kapitza and
Kapitza’s work �2�, the problem continues to be the subject of
intense research; an exhaustive review is presented in Ref. �3�. A
linear stability analysis began with the investigations of Benjamin
�4� and Yih �5�. More sophisticated linear analyses based on wave
packets and a pseudospectral method are presented in Ref. �6�. In
low Reynolds number interval, Benney �7� proposed single non-
linear differential equations for the film thickness. However, Ben-
ney’s equation failed in capturing all the inertia effects, thus lim-
iting its validity to a narrow region around the critical Reynolds
number. For moderate and high Reynolds numbers Skhadov �8�
and Lee and Mei �9� proposed a two-equation model using mo-
mentum integral method. This technique requires the prescription
of a velocity profile, which make the models depend strongly on
the initial velocity profile. Skadov’s �8� model does not predict the
stability threshold and does not feature Hopf bifurcations. How-
ever, Lee and Mei �9�, who favored the second order terms with
respect to long wave parameter, captured the latter bifurcations,
but failed to predict the stability threshold. Recently Ruyer-Quil
and Maneville �10� derived a four-equation model using the
Galerkin method with specific polynomials as test functions. This
model involves the film thickness, the flow rate, as well as two
corrections to the last parameter; the model predicts correctly the
condition for the onset of the instability. It is worth noticing that
besides the surface instability mode a thin film of fluid flowing
down an inclined plane displays shear instability mode �11�. This
instability mode is prevalent when the angle of inclination is very
small. Shear mode has wavelengths comparable to the mean film
height and travels slower than the mean flow. Developing models
able to catch a shear instability mode is an interesting perspective.

We are proposing a model that consists of four equations that
describe the evolution of the flow rate q�x , t�, film thickness

h�x , t�, shear stress at the wall �0�x , t�, and free-surface velocity
s�x , t�. The present brief features an alternate formulation of the
problem, which is shown to yield results that are comparable to
the theoretically more involved methods of Ruyer-Quil and
Maneville �10�. The Navier–Stokes equations are reduced using
the integral method of Karman–Polhausen and a four-order poly-
nomial to represent the velocity profile. The effectiveness of the
proposed model is verified by comparing the obtained results with
those of Brevdo et al. �6� and the experimental observations given
in Ref. �12�.

2 Formulation of the Problem
We consider a two-dimensional flow of a thin layer of an in-

compressible, Newtonian fluid down an inclined plane, making an
angle � with the horizontal, under the action of gravity, as shown
in Fig. 1. The upper half space consists of air having a negligible
density. The gravitational acceleration is g= �g sin � ,−g cos ��.
The dimensionless governing equations are as follows:

ut + uux + wuz = − px +
1

R
��uxx +

1

�
uzz +

3

�
� �1�

�2�wt + uwx + wwx� = − pz +
�

R
�wzz −

3

�
cot �� �2�

ux + wz = 0 �3�

z = 0: u = w = 0 �4�

z = H�x,t�: w = Ht + uHx �5�

uz + � R PH + �2�wx−2uxHx� +
�3 We R HxxHx

�1 + �2Hx�3/2 = 0 �6�

P +
�

R
�uzHx − 2wz� +

�2 We Hxx

�1 + �2Hx
2�3/2 = 0 �7�

The subscripts x and z indicate partial derivatives of the variables
with respect to x and z. The nondimensional equations involve the
following fundamental dimensionless numbers: R=c0H0 /�, We
=� /�H0c0

2, Fr=gH0 cos � /c0
2=3 cot � /R, and �=H0 /L, which are

the Reynolds, the Weber, the Froude numbers, and a long wave
parameter. H0, L, and c0=gH0

2 sin � /3� are the initial film depth,
characteristic length, and Nusselt velocity, respectively. In addi-
tion to long wave condition, we assume the following order of
magnitude for the Reynolds and Weber numbers: R=O�1� and
We=O��−2�.

3 Model
The solution of the problem is approximated via the integral

method of Karman–Polhausen, and the following velocity profile
is assumed in order to initiate the analysis:
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by Robert M. McMeeking. Fig. 1 Schematic of the problem
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u�x,z,t� = a�x,t�z + b�x,t�z2 + c�x,t�z3 + d�x,t�z4 �8�
From the definitions of the velocity at the free surface, the flow
rate, the shear stress at the wall, and the free surface, the unknown

coefficients a�x , t�, b�x , t�, c�x , t�, and d�x , t� can be related by
four equations to the previously mentioned parameters s�x , t�,
q�x , t�, �0�x , t�, and �s�x , t�, respectively,

a�x,t� = �0�x,t�

b�x,t� = −
3

2

− h�x,t�2�s�x,t� + 3 · �0�x,t� · h�x,t�2 + 8 · h�x,t� · s�x,t� − 20 · q�x,t�
h�x,t�2

c�x,t� =
2 · �14 · h�x,t� · s�x,t�� + 3�0�x,t� · h�x,t�2 − 30 · q�x,t� − 2 · h�x,t�2�s�x,t�

h�x,t�4

d�x,t� = −
5

2

− 12 · q�x,t� + �0�x,t� · h�x,t�2 − h�x,t�2�s�x,t� + 6 · h�x,t� · s�x,t�
h�x,t�5

Four equations are required to determine the unknown physical
quantities q�x , t�, �s�x , t�, �0�x , t�, and h�x , t�. Combining continu-
ity equation �3� and the kinematic boundary condition �5� along
with Leibniz rule we yield to the first equation

ht + qx = 0 �9�

Integrating Eq. �2� from a z-coordinate somewhere in the film to
the free surface and using the boundary condition �7� we obtain a
pressure. Substituting the expression of the pressure into Eq. �1�
and integrating over the entire film thickness with the boundary
condition �6�, we produce a second required equation. Using the
method of moments with a monomial of orders 1 and 2, respec-
tively, we deduce both the third and the fourth equations. The
three nonlinear equations are too long to be inserted in this brief
note.

4 Linear Stability
The four nonlinear equations are linearized around the basic

solution, and we obtain

Ht + Qx = 0 �10�

− We �3Hxxxx +
�2

R
�− Sxxx +

9

2
Hxxx + 3Hxxt� + ��−

15

7
Hxt +

8

35
Sxx

−
1

35
�xx −

36

35
Hxx

3

R
Hxx cot � − Htt� +

1

R
��x − 3Hx� = 0 �11�

1

2
We �3Hxxxx +

�2

R
� 7

10
Sxxx −

61

20
Hxxx − 2Hxxt −

1

60
�xxx� + ��39

35
Hxt

−
1

10
Sxt +

3

160
�xx +

1

120
�xt −

137

560
Sxx +

639

1120
Hxx

−
3

2 R
Hxx cot � +

1

2
Htt� −

1

R
�Sx − 3Hx� = 0 �12�

1

3
We �3 · Hxxxx +

�2

R
� 61

105
Sxxx −

169

70
Hxxx −

11

7
Hxxt −

1

70
�xxx�

+ ��183

280
Hxt −

13

105
Sxt +

1

80
�xx +

1

140
�xt −

13

56
Sxx +

39

112
Hxx

−
1

R
Hxx cot � +

2

7
Htt� −

2

R
�Sx + Ht� = 0 �13�

The perturbation quantities are expanded in the form of normal

modes, and the equations are rescaled in the streamwise direction
in order to drop the parameter �.

Fig. 2 Cutoff frequency �=4.6, �=5.02Ã10−6 m2 s−1, �
=1130 kg m−3, and �=69Ã10−3 N m−1; experimental data from
Ref. †12‡

Fig. 3 Phase velocity cr /kr as function of wave number kr: �
=4.6, �=5.02Ã10−6 m2 s−1, �=1130 kg m−3, and �=69
Ã10−3 N m−1
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�Q�x,t�,H�x,t�,��x,t�,S�x,t�� � �A,B,C,D� · ei�k.x−ct�

where A ,B ,C ,D are arbitrary constants, while c=cr+ i ·ci and k
=kr+ i ·ki are the complex angular frequency and complex wave

number, respectively. Then, the four linear partial differential
equations are transformed into four algebraic equations with the
four constants A ,B ,C ,D. The condition for a nontrivial solution
for the algebraic system leads to the dispersion equation given in
the Appendix. In the frame of long waves, the marginal stability
condition leads to the threshold of stability Rc= 5

6cot � given in
Refs. �4,5�. Figure 2 shows the cut-off frequency that separates the
stable from the unstable region. A good agreement with observa-
tions given in Ref. �12� is amply evident. Furthermore, the celerity
of the propagating waves and spatial growth rate are calculated
and compared with the experimental results in Figs. 3 and 4, re-
spectively. Here again the agreement is good. It is worth noticing
that the similar agreement was found by Brevdo et al. �6�, see
Figs. 11a, 11b, and 12a in Ref. �6�.

The accuracy of the proposed model is verified using the for-
malism of absolute-convective stability based on Briggs’ collision
criteria. For a given growth rate ci, the solution of the dispersion
relation is displayed in the �kr ,ki� plane as the oscillation fre-
quency cr is varied. Similar to Ref. �6�, we show through Figs. 5
and 6 the motion of the solution curves when the growth rate is

Fig. 4 Spatial growth rate −ki as function of wave number kr:
�=4.6, �=5.02Ã10−6 m2 s−1, �=1130 kg m−3, and �=69
Ã10−3 N m−1

Fig. 5 „a… Image of different branches when the growth rate is
ci=0.02 and „b… close view on the curve „1… R=40

Fig. 6 „a… Image of different branches when the growth rate is
ci=0 and „b… close view on the curve „1… R=40
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decreased from ci=0.02 to ci=0. No pinching of the spatial
branches is observed. According to the collision criteria the film
flowing down an inclined plane is absolutely stable and convec-
tively unstable, which means that the perturbations are seeped
down. The results hold true for Reynolds numbers up to R=200.
The resemblance between Figs. 5 and 6 and Figs. 3�a� and 3�c� in
Ref. �6� is clear. The agreement between our results and those
given by Brevdo et al. �6� is further verified when a reference
frame moving at speeds V=1.15 and V=1.16 with respect to the
laboratory is considered. The similitude between our results
shown in Figs. 7 and 8 and Fig. 6 in Ref. �6� is encouraging.
Figure 7�a� shows the three solution branches noted by �1�, �2�,
and �3� for ci=0.0075. The solution �1� is located in the positive ki
half plane. When the growth rate ci decreases to ci=0.0073 �see
Fig. 7�b�� the collision of the solution branches �1� and �3� run
into the point marked by kII. Decreasing further the spatial growth
rate to ci=0.0062, the collision is found between branches �1� and
�2� �see Fig. 8�a��. This collision point is noted by kI. Figure 8�b�
shows the solution branches after collision. The positions of the
collision point are recovered with remarkable precision. The re-
sults are summarized in the following table.

Collision points V=1.15 V=1.16
ci ci

Brevdo et al. �6� I 0.0062 0.0079
Present model I 0.0061 0.007889
Brevdo et al. �6� II 0.0073 0.0078
Present model II 0.00732 0.00779

5 Conclusion
We propose a four-equation model to describe the motion of a

liquid film flowing down an inclined plane that involves physical
proprieties of the flow only, the flow rate, the film thickness, the
shear stress, and the velocity on the free surface. The results ob-
tained were found to follow closely the past experimental obser-
vations and the outcome of more encompassing linear analyses.

Fig. 7 Pinching process in the complex wave number plane
„ki ,kr… for V=1.15, R=200, We=14.18:�=4.6, �=5.02
Ã10−6 m2 s−1, �=1130 kg m−3, and �=69Ã10−3 N m−1 Fig. 8 Pinching process in the complex wave number plane

„ki ,kr… for V=1.15, R=200, We=14.18:�=4.6, �=5.02
Ã10−6 m2 s−1, �=1130 kg m−3, and �=69Ã10−3 N m−1
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Appendix: Dispersion Equation

501,760k8 We R + �492,800I We R2 + 752,640I�k7

+ �1,505,280 cot g��� − 564,480Ic + 30,105,600 We R

− 1,827,840 R − 121,800 We R3 − 501,760I We R2c�k6

+ �15,993,600I We R2 − 814,464I R2

+ 1,478,400I cot���R + 3,958,080c R + 246,400 We R3c

+ 8,290,400I�k5 + �− 1,850,240c2 R − 1,505,280I cot���c R

+ 47,088 R3 + 2,841,300Ic R2 − 60,211,200Ic

− 15,052,800I We R2 c + 90,316,800 cot g���

− 93,623,040 R + 263,424,000 We R − 365,400 cot���R2

− 125,440 We R3 c2�k4 + �− 16,941,960I R2

+ 739,200 cot���R2 c − 345,312c R3 − 3,079,440Ic2 R2

+ 2,167,603,200I + 206,713,920c R

+ 47,980,800I cot���R�k3 + �672,840c2 R3

+ 790,272,000 cot��� + 1,034,880Ic3 R2 − 96,902,400c2 R

+ 57,539,160Ic R2 − 550,368,000 R − 1,512,806,400Ic

− 376,320 cot���c2 R2 − 45,158,400I cot���c R�k2

+ �2,370,816,000I − 497,280c3 R3 − 56,434,560Ic2 R2

+ 951,148,800c R�k + 16,934,400Ic3 R2

− 361,267,200c2 R − 790,272,000Ic + 125,440c4 R3 = 0

I is the complex number.
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A new approach to measure the elastic modulus of nanowires is
presented in this paper using a nanowire and a microcantilever
beam composite system. The mechanical behavior of a nanowire-
microcantilever beam structure under electrostatic actuation was
studied using the finite element method, and a comparison of the
resonance frequencies for a nanowire-microcantilever composite
beam structure and a microcantilever beam only is presented. The
test system can be optimized by introducing arrays of nanowires
to increase the resonance frequency difference between the micro-
cantilever beams and the nanowire array microbeam structures.
�DOI: 10.1115/1.3130443�

1 Introduction
Nanowires �NWs� have a wide range of potential applications

in opto-electronic nanodevices �1�, biological sensors �2�, and
nano-electronic circuits �3�. As such, there is considerable re-
search interest in measuring the material properties of NWs. For
example, Young’s modulus is an important mechanical property
for designing nanoelectromechanical systems �NEMSs�. Experi-
mentally, Young’s modulus of a NW was found to have a complex
dependence on its cross-sectional size for the size range
101–102 nm. It should also be noted that careful consideration
should be taken in the adoption of Young’s modulus as a mechani-
cal property of NWs as a continuum hypothesis may no longer
exist �4�. However, for the discussion outlined in this paper, a
continuum approach to study overall Young’s modulus is still
valid because the NW dimensions are large when compared with
the continuum cross-sectional limit as proposed in Ref. �4�.

Random variations of Young’s moduli of silicon NWs and gold
NWs were observed with atomic force microscopy �AFM� �5,6�
measurements. For silicon NWs, Tabib-Azar et al. �5� measured
the range for Young’s modulus to vary from 93 GPa to 250 GPa
with NW diameters ranging from 140 nm to 200 nm �compared
with 185 GPa for bulk silicon in the �111� direction�. For gold
NWs, Young’s modulus is shown to range from 40 GPa to 110
GPa �compared with 78 GPa for bulk gold� with NW diameters
ranging from 40 nm to 250 nm �6�. Some researchers attribute
these variations to measurement uncertainties of the NW dimen-
sions and the AFM tip. They state that the modulus is independent
of cross-sectional size and comparable to the corresponding bulk
materials �5–7�. Young’s modulus lower than that of the bulk

silica was reported when the silica NW size is between 40 nm and
100 nm by resonance frequency measurements �8–10�. However,
these lower values are still attributed to factors such as different
initial NW shapes �11�. In these experiments, handling, position-
ing, imaging, gripping, applying, and measuring simultaneously
the nanoscale forces and displacements are obstacles to accurately
characterize Young’s modulus of free-standing NWs. Out-of-plane
measurements of NW cross-sectional size generate nontrivial un-
certainty in some experiments �5–7,9�. Failure to employ straight
NWs, as shown in Refs. �8,10�, also makes it difficult to obtain
accurate Young’s modulus measurements.

Herein, we present an alternative approach to study Young’s
moduli of various NWs with rectangular cross sections directly
fabricated on microcantilevers �MCs� with dimensions in the size
range 50–100 nm. The finite element method �FEM� is used to
model a NW-MC structure and the MC beam only electrostati-
cally actuated in bending. The dependency of resonance frequency
on the MC beam and/or NW geometry sizes, mechanical proper-
ties, boundary conditions, and actuation voltage is characterized.
Experimentally, this technique can be used to compare the differ-
ent resonance frequencies between a NW-MC structure and the
corresponding MC beam only to numerically calculate overall
Young’s moduli of the NWs. The essence of this approach is to
dramatically reduce difficult nanoscale manipulations and mea-
surements by mechanically testing NWs with a microelectrome-
chanical system �MEMS� device.

2 Modeling Approach
The design and characterization of MC beams as mass sensors

�12,13� and as actuators �14,15� were widely researched. Electro-
static actuation of a NW-MC structure can be achieved by apply-
ing a voltage V between the structure and a rigid ground plate
beneath it �see Fig. 1�. Both static and dynamic behaviors of the
NW-MC structure can be observed using this actuation method.
The resonance frequency for a MC beam will shift when NWs are
fabricated on the top surface. The shift in the resonance is a func-
tion of the mass loading, the mechanical properties, dimensions,
number, and orientation of the NWs. In this paper, the effect of the
mass loading on the resonance frequency is considered in the
analytical solutions and the FEM simulations by assuming that the
mass density is the same as the bulk density �5,8–10�. In addition,
the number, orientation, and geometries of the NWs would be
known experimentally through metrology measurements with
scanning electron microscope �SEM� and AFM imaging. Thus,
overall Young’s modulus of the NWs can be characterized from
the resonance frequency difference if the resonance difference is
large enough compared with experimental uncertainties.

Before implementing this approach experimentally, FEM and
analytical studies should be performed to predict and analyze the
dependence of the resonance frequency on Young’s modulus, di-
mensions, and other factors as previously mentioned for the
NW-MC structure and the corresponding MC beam only. An ap-
propriate dimension ratio for the NW and the MC beam is also a
prerequisite to obtain an experimentally measurable shift in reso-
nance frequency between a NW-MC structure and a MC beam
only. A coupled transducer element TRANS126 and a three di-
mensional structure solid element SOLID45 provided by commer-
cial software ANSYS were adopted to implement the FEM simula-
tion of the MC beam only and the NW-MC structure under
electrostatic actuation �16�.

A gold NW fabricated on an aluminum MC beam was selected
as the composite system for the following FEM simulations. The
dimensions and mechanical properties of the material components
were listed in Table 1 and the static and resonance cases are
shown in Figs. 2 and 3, respectively. In Fig. 2, the maximum
transverse displacements of the MC beam only and the NW-MC
structure under different voltages were shown. For a MC beam
only, the FEM calculated pull-in voltage VPI �26.0–27.0 V� is
consistent with the analytical value of 26.3 V obtained following
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the closed-form expressions given by Pamidighantam et al. �17�.
As can also be seen in Fig. 2, the displacement of the NW-MC
structure is smaller than that of a MC beam only under the same
voltage.

The resonance frequencies of the MC beam were influenced by
the applied voltage amplitude. The equation of motion for the
undamped MC beam under electrostatic actuation is �18�

�A
�2u�x,t�

�t2 +
�2

�x2�EIz

�2u�x,t�
�x2 � = Fm + Fe �1�

where Fm is the structural force and Fe is the electrostatic force.
The resonance frequency under electrostatic actuation is �18�

f =
1

2�
�km − ke

m
�2�

where km and ke correspond to mechanical and electromechanical
stiffnesses, respectively, and m is the MC beam mass. Although
km is constant for a given MC beam, ke is proportional to the
applied voltage V2. From Eq. �2�, it is observed that the resonance

frequency decreases as the applied voltage increases. The reso-
nance frequencies for the NW-MC beam actuated with different
applied voltages are presented in Fig. 3. As can be seen, the reso-
nance frequencies for the NW-MC and MC beam only structures
actuated with a voltage of V=5 V �V /VPI�20%� will shift ap-
proximately to 0.6% from near zero voltage �V=0.1 V� actuation.

For a simple cantilever beam vibrating under a mechanical
load, the first resonance frequency given by Euler–Bernoulli beam
theory is �19�

fEB =
1

2�
�2�E1Iz

�1A
�3�

where � is the first solution of cos��L�cosh��L�=−1, Iz

=w1t1
3 /12 is the moment of inertia of the cross section, and A is

the cross section area. Rotational inertia and shear effects were
neglected in Eq. �3�. Gere and Timoshenko proposed a solution to
include these effects and the solution is expressed by the follow-
ing �20�:

fT =
1

2�
�2�E1Iz

�1A
	1 −

1

2
�2 Iz

A
�1 +

E1

KG
�
 �4�

where G=E / �2�1+��� is the shear modulus, and K=10�1
+�� / �12+11�� is the shear coefficient. The resonance frequencies
of the MC beam only calculated with the FEM model and the
theoretical formulas are listed in Table 2. From Table 2, it can be
seen that the calculated resonance frequency at near zero actuation
voltage �V=0.1 V� shows close agreement with those calculated
from theoretical formulas and the difference is within 1%. In order
to lessen the voltage effect on the resonance frequency while con-
sidering the design requirements to actuate the beams, an actua-
tion voltage of 5 V was selected and used in the following FEM
calculations.

The test system can be optimized by introducing NWs in an
array instead of a single NW fabricated on the MC beam. When
the dimension ratio of the NW and the MC beam is fixed, employ-
ment of a NW array enlarges the resonance frequency difference
between the NW array MC structure and the MC beam only.
Therefore, the mechanical behavior of a MC beam with a NW
array fabricated on the top surface was studied. Figure 4 illustrates
the NW array fabricated on the MC beam surface with a 0 deg
misalignment angle. As can be seen, the NWs are oriented along
the symmetric axis of the MC beam. The resonance frequency of
the NW array MC structure can be calculated via the composite
beam theory �21� when rotational inertia and shear effects are not
taken into account with the following equation:

Fig. 1 Schematic illustration of a single NW fabricated on a
MC beam surface and under electrostatic actuation „image is
not to scale…

Table 1 Parameters of a single NW fabricated on the MC beam

Microcantilever
�aluminum�

Nanowire
�gold�

Young’s modulus �GPa� E1=70 E2=78
Poisson’s ratio �1=0.3 �2=0.44
Density �kg /m3� �1=2.7�103 �2=19.3�103

Length ��m� L1=25 L2=25 /cos���
Width ��m� w1=2.50 w2=0.10
Thickness ��m� t1=0.50 t2=0.05
Initial gap ��m� h=1
Misalignment angle �deg� �=0 to 1

Fig. 2 The maximum transverse displacement of the MC beam
under different voltages and with a 0 deg misalignment angle
„circle: NW-MC; square: MC beam only…

Fig. 3 Resonance frequencies of the MC beam under different
voltages and a misalignment angle of 0 deg „circle: NW-MC;
square: MC beam only…
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fEB
� =

1

2�
�2�E1Iz1 + E2Iz2

��A�
�5�

where Iz1 and Iz2 are the moments of inertia about neutral axis of
the MC beam and the NW array, respectively, and �� and A� are
the equivalent density and cross section and may be calculated
with

Iz1 =
1

12
w1t1

3 + �w1t1��h1 −
1

2
t1�2

�6�

Iz2 = n · 	 1

12
w2t2

3 + �w2t2��h2 −
1

2
t2�2
 �7�

�� =
�1w1t1 + n · �2w2t2

w1t1 + n · w2t2
�8�

A� = w1t1 + n · w2t2 �9�

where h1= �E1w1t1
2+nE2w2t2�2t1+ t2�� / �2�E1w1t1+nE2w2t2��, h2

= �t1+ t2�−h1, and n is the number of the NWs on the MC beam.
The theoretical resonance frequencies were calculated for the

NW array MC structure using Eq. �5�. These frequencies were
compared with the FEM calculated resonance frequencies in Fig.
5. As can be seen, the resonance frequency of the NW array MC
structure increases with increasing NW thickness t2 or width w2
when all other conditions are fixed. It can also be seen that the
resonance frequencies calculated from the FEM models show
close agreement with those calculated from the theoretical for-
mula. The maximum difference for the two methods is 1.0%.

3 Simulation and Analysis Considerations
The FEM model for a NW array with a misalignment angle of

�=1 deg fabricated on a MC beam is illustrated in Fig. 6. A
convergence test for this model was performed and is shown in
Fig. 7. The modeling parameters are the same as the NW-MC
model parameters listed in Table 1. As can be seen in Fig. 7, the
resonance frequency converges as the number of SOLID45 ele-
ments approaches approximately 23,000. Therefore, 23,000 ele-
ments were used in the following calculations to compare the
resonance frequencies of the MC beam only and the NW array
MC structure. By measuring the resonance frequencies for these

two systems experimentally, we were able to recover overall
Young’s modulus of the NW material with the FEM models. For
example, the resonance frequencies in Fig. 8 were calculated for
different overall Young’s modulus of gold NWs when the arrays
have a misalignment error of �=0 deg and �=1 deg. A misalign-
ment error may be possible due to errors in the e-beam patterning
of the MC beams on a test die when patterning over large areas.

4 Experimental Uncertainty Analysis
An uncertainty analysis of Young’s modulus for the NWs as

measured with the proposed experimental approach is discussed.
The cross section of the NW array MC structure is shown in Fig.

Table 2 Resonance frequency of the MC beam only

FEM Theory

Actuation voltage
V=0.1 V

Actuation voltage
V=5 V

Euler–Bernoulli
beam

Timoshenko
beam

Frequency �kHz� 662.74 659.55 658.01 657.86
Relative differencea - �0.48% �0.71% �0.74%

aRelative difference is based on the FEM calculated resonance frequency at actuation voltage V=0.1 V.

Fig. 4 Schematic illustration of NWs fabricated along the sym-
metric axis of the MC beam with a 0 deg misalignment

Fig. 5 Dependence of resonance frequencies on the NW-MC
structure with an array of ten NWs on the beam surface as a
function of varying NW width and thickness. The NWs are fab-
ricated along the symmetric axis of the MC beam and the pitch
width is w3=100 nm „circle: FEM, w2=100 nm, t2 varying; solid
line: theory, w2=100 nm, t2 varying; square: FEM, t2=50 nm,
w2 varying; dash line: theory, t2=50 nm, w2 varying….

Fig. 6 Schematic illustration of a NW array with a misalign-
ment angle of �=1 deg fabricated on a MC beam
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4 and the modeling parameters are listed in Table 1. Additional
parameters are a misalignment angle of �=1 deg and the number
of NWs is n=10. The corresponding equations and explanation
for the numerical method of the analysis are given in the Appen-
dix. It should be noted that the calculated uncertainties discussed
here are only for systematic uncertainties. The length L, MC beam
width w1, and NW width w2 can be measured with a SEM using
different magnifications to measure at the corresponding scale for
each dimension. Using a Hitachi S-3000N SEM instrument as an
example, the resolution for measuring L, w1, and w2 are approxi-
mately 100 nm, 10 nm, and 0.5 nm, respectively. The correspond-
ing relative uncertainties RL, Rw1, and Rw2 are approximately
0.5% each. The MC beam thickness t1 and the NW thickness t2
can be measured with an AFM, which has resolution of 1 nm,
which corresponds to the relative uncertainties of Rt1=0.2% and
Rt2=2%, respectively, for the thickness of the NWs and MC beam
measurements. The resonance frequencies of the MC beam only
and the NW array MC structure can be measured by microscope
scanning vibrometer and the relative uncertainties RfEB and RfEB

�

are less then 0.1%. As the resonance frequencies are compared
with the FEM results, the uncertainty associated with the FEM
results also contribute to the uncertainties of the final results and

is less than 1%. As can be seen from Fig. 8, the relative uncer-
tainty for the resonance frequency when there is a 1 deg misalign-
ment angle is 2.5%. Therefore, 2.5% is used for RfEB

� and 0.1% is
used for RfEB. The relative uncertainty for NW Young’s modulus
RE2 with respect to a change in the NW thickness with the width
of 100 nm is shown in Fig. 9. As can be seen, RE2 decreases as the
NW width w2 or NW thickness t2 increases, and the limit for the
maximum uncertainty of the NW modulus RE2 is 17.2% for the
smallest NW �t2=50 nm� considered in Fig. 6, while the uncer-
tainty decreases to 7.5% for the largest NW considered �t2
=100 nm�. A comparison with other techniques for measuring the
modulus of gold NWs is shown in Table 3, which illustrates that
the proposed technique is comparable or superior to published
results. It can be seen that NW overall Young’s modulus uncer-
tainty measured by the proposed experimental approach is well
within the range of other experimental methods while improving
repeatability and the cost �time and labor� to perform the experi-
ments. Thus this approach provides a viable alternative to measure
overall Young’s modulus of NWs.

5 Summary
The dynamic behavior of the MC beam with and without NWs

under electrostatic actuation was studied with FEM modeling in
this paper. Several factors affect the resonance frequency of the
MC structure. If the electrostatic actuation voltage is low com-
pared with the pull-in voltage, the dependence of the resonance
frequency on the actuation voltage can be neglected. Introducing a
NW array fabricated on the MC beam instead of a single NW
significantly increases the resonance frequency difference be-
tween the NW-MC structure and the MC-beam only. The NW
Young’s modulus can be obtained by comparing resonance fre-
quencies of the NW-MC composite structure and the MC-beam
only system as measured experimentally to extrapolate the elastic
modulus of the NWs with FEM modeling. The proposed design
may have applications as a test structure for measuring the elastic
properties of bending NWs.

Table 3 Typical uncertainties for NW Young’s moduli

Reference Material Description
Elastic modulus

�GPa�
Relative uncertainty

�%�

Tabib-Azar, et al. �5� Silicon, D=100−200 nm, L�10 �m AFM static/dynamic bending 210	40 19.0
Wang, et al. �8� Silicon oxide, D=42	2 nm, L=11.7	0.2 �m TEMa dynamic bending 31	5.1 16.5
Dikin, et al. �9� Silicon oxide, D=80	5 nm, L=17	0.2 �m SEM Dynamic bending 43.4	7.0 16.1

aTEM is the abbreviation of transmission electron microscopy.

Fig. 7 Convergence test of the NW array MC structure with
misalignment angle: �=1 deg

Fig. 8 Resonance frequencies for the NW array MC structure
by assuming different NW overall Young’s moduli

Fig. 9 Variance of the relative uncertainty of NW overall
Young’s modulus RE2 with respect to NW thickness. Ten NWs
are fabricated along the symmetric axis of the MC beam. The
NW width is w2=100 nm and the thickness t2 is varying.
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Nomenclature
E1 
 Young’s modulus of the MC beam
E2 
 Young’s modulus of the NW
h 
 initial electric gap/anchor height
L 
 MC-beam length
n 
 number of NWs on the MC beam

�1 
 Poisson’s ratio of the MC beam
�2 
 Poisson’s ratio of the NW
� 
 misalignment angle of the NW

�1 
 MC beam density
�2 
 NW density
t1 
 thickness of the MC beam/anchor
t2 
 thickness of the NW
V 
 voltage

VPI 
 pull-in voltage
w1 
 MC beam/anchor width
w2 
 NW width
w3 
 pitch width

Appendix
For a MC beam only, Eq. �3� can be rewritten as

E1 =
48�2fEB

2 �1

�4t1
2 �A1�

The relative uncertainty of Young’s modulus of the MC beam RE1
calibrated from the experiment is

RE1 =
1

E1

�	 �E1

�t1
· �Rt1t1�
2

+ 	 �E1

�L
· �RLL�
2

+ 	 �E1

� fEB
· �RfEBfEB�
2

�A2�
where Rt1, RL, and RfEB are the relative measurement uncertainties
of the thickness, length, and resonance frequency of the MC
beam, and

�E1

�t1
= −

96�2fEB
2 �1

�4t1
3 �A3�

�E1

�L
=

192�2fEB
2 �1

�4t1
2L

�A4�

�E1

� fEB
=

96�2fEB�1

�4t1
2 �A5�

For NW array fabricated on a MC beam, the total relative un-
certainty of Young’s modulus of the NW RE2 is

RE2 =
1

E2
�	 �E2

�t1
· �Rt1t1�
2

+ 	 �E2

�w1
· �Rw1w1�
2

+ 	 �E2

�t2
· �Rt2t2�
2

+ 	 �E2

�w2
· �Rw2w2�
2

+ 	 �E2

�L
· �RLL�
2

+ 	 �E2

� fEB
�

· �RfEB�fEB
� �
2�1/2

�A6�

where Rw1 is the relative measurement uncertainty of the MC
beam width Rt2, Rw2 is the relative measurement uncertainties of
the thickness, length of the NW, RfEB

� is the relative measurement
uncertainty of the resonance frequency of the NW array MC struc-

ture, and RE1 is given in Eq. �A2�. Due to the difficulty in rewrit-
ing Eq. �5� into the explicit function of E2, Eq. �15� needs to be
calculated numerically. Taking �E2 /�t1 as an example, a small
deviation of t1 is imposed to the thickness of the MC beam de-
noted as �t1 and the thickness becomes �t1+�t1�. Substituting
�t1+�t1� into Eq. �5� with all other variables unchanged, the only
unknown variable is Young’s modulus of NW denoted as �E2

+�E2� and the resonance frequency fEB
� becomes a constant. By

solving Eq. �5�, the deviation �E2 caused by �t1 is obtained and
thus �E2 /�t1 is approximated as �E2 /�t1. Other components of
Eq. �A6� can be calculated in a similar way.
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This brief note presents a rigorous proof of the general solutions
obtained by Aderogba [1977, “On Eigenstresses in Dissimilar
Media,” Philos. Mag., 35, pp. 281–292] for a defect in elastic
bimaterial solids. The derivation is based on the fact that some
derivative and integral forms of the biharmonic functions are also
biharmonic. The associated solutions can be expressed as the lin-
ear combinations of these biharmonic functions and their un-
known coefficients can be determined by the interface conditions.
It is found that the coefficients only depend on the contrasts of
material constants across the interface.
�DOI: 10.1115/1.3112746�

1 Introduction
The solutions to singularities such as point forces, dislocations

and their dipoles, and phase transformation dots embedded in
bonded elastic dissimilar materials have been investigated by a
number of researchers such as Dundurs and Mura �1�, Adeerogba
�2�, and Suo �3�, among others. For instance, Dundurs and Mura
�1� presented the solutions for dislocations embedded in half plane
or in circular inclusions. Suo �3� obtained the universal complex
potentials independent of the nature of singularities for the elastic
stress and displacement solutions of a bimaterial system, in terms
of the solutions of the same singularities in an infinite homoge-
neous plane. Instead of complex potentials, Adeerogba �2� first
gave the universal formulas for Airy stress functions, equivalent to
the complex expressions. However, the proof has not been given
in his paper. In this note, we will rigorously rederive the formulas
given by Adeerogba �2� based on the potential theory. It is antici-
pated that the same methodology can be applied to the derivations
for other media involving interfaces or free surfaces.

2 Problem Formulation

2.1 Elasticity Equations. For a linear elastic solid, the con-
stitutive form for stress �ij and strain �ij is

2G�ij = �ij −
�

1 + �
�kk�ij �1�

where G and � are elastic shear modulus and Poisson’s ratio,
respectively.

In plane strain, the equilibrium equation is, without the pres-
ence of body forces,

�ij,j = 0 �2�
or the compatibility equation can be expressed as

�2��xx + �yy� = 0 �3�

In developing the solution, we can define the Airy stress func-
tion � for the stresses as

�xx =
�2�

�y2 , �yy =
�2�

�x2 , �xy = −
�2�

�x � y
�4�

Substitution of Eq. �4� in the governing equations �3� leads to a
biharmonic equation for the Airy stress function

�2��2�� = 0 �5�

In addition, we can obtain the displacements �u ,v� in terms of
the stress function, without considering the disagreements pertain-
ing to any rigid body motions, as follows:

2Gu = −
��

�x
+ �1 − ��� �2�dx �6�

2Gv = −
��

�y
+ �1 − ��� �2�dy �7�

2.2 Interface Problems. As for an elastic bimaterial system,
the stress and displacement fields in the upper and lower half
planes are controlled by their Airy stress functions �I and �II.
However, their final forms should depend on the interface condi-
tions. For pure elastic problems, the interface conditions can be
obtained by enforcing continuity of normal and tangential dis-
placements and tractions. Therefore, this leads to

u+ = u− �8�

v+ = − v− �9�

�yy
+ = �yy

− �10�

�xy
+ = − �xy

− �11�

On the interface yI=yII=0, where yi �i=I , II� are local coordinates
in the vertical direction for two bonded materials, it can be easily
confirmed that the following relations must be satisfied:

�2�I

�x2 =
�2�II

�x2 �12�

�2�I

�x � yI
= −

�2�II

�x � yII
�13�

��−
��I

�x
+ �1 − �I�� �2�Idx� = −

��II

�x
+ �1 − �II�� �2�IIdx

�14�

��−
��I

�yI
+ �1 − �I�� �2�IdyI� = − �−

��II

�yII
+ �1

− �II�� �2�IIdyII� �15�

where both �I and �II are biharmonic functions, and �=GII /GI,
�I, and �II are Poisson’s ratios for the upper and lower planes,
respectively.

3 Solution Expressions
In particular, let us consider the case where the defects are

located in the upper half plane. The solutions can be sought after
the sum of the contributions from the source and its image with
respect to the interface between the materials. The source solution
in the homogeneous plane is denoted as ��, but the image solu-
tions cannot be obtained in an easy way because of the stress and
displacement coupling on the interface. Following the previous
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work �i.e., Adeerogba �2��, the Airy stress functions for the upper
and lower layers can be expressed as linear combinations of some
biharmonic functions. Thus we have

�I = �
i=1

4

Ni�̄i
��x,yI� �16�

�II = �
i=1

4

Mi�̄i
��x,yII� �17�

where yi �i=I , II� are local coordinates and, in particular, yI=
−yII; Ni and Mi are undetermined constants and can be determined
by the interface conditions. Based on the work presented by

Adeerogba �2�, the biharmonic functions �̄i
� can be expressed as

the combinations of the derivative and integral forms of ���x ,y�.
Especially, following Adeerogba �2�, those biharmonic functions
are chosen as follows:

�̄1
� = 	 ���x,y� in the upper plane

���x,− y� in the lower plane

 �18�

�̄2
� = �1 − 2y

�

�y
+ y2�2����x,− y� in the upper plane

�19�

�̄3
� =� dy� �2���x,− y�dy �20�

�̄4
� = y� �2���x,− y�dy �21�

From the expression, we know that M2
0.

It is easy to prove that �̄1
� and �̄3

� are biharmonic functions. In

addition, applying the Laplacian operator to �̄2
� and �̄4

� gives

�2�̄2
� = �− 4

�2

�y2 + 2y
�

�y
�2����x,− y� + 3�2���x,− y�

�22�

�2�̄4
� = �2���x,− y� �23�

considering the identities

�2�yf� = y�2f + 2f �y �24�

�2�y2f� = 2f + 4yf ,y + y2�2f �25�

and the fact that if ���x ,y� is biharmonic, so is �̄��x ,y�. It can
also be easily proven that these two functions are also biharmonic
since

�4�̄2
� = �− 4

�2

�y2�2 + 2y
�

�y
�4 + 4

�2

�y2�2����x,− y� = 0

�26�

�4�̄4
� = 0 �27�

Therefore the chosen functions are all biharmonic and of course
their combinations as given in Eqs. �16� and �17� must meet Eq.
�5�.

4 Determination of Unknown Constants
We now turn to find out the unknown constants based on the

interface continuity conditions. This is equivalent to the determi-
nation of these constants by forcing the solutions in Eqs. �16� and
�17� to meet the interface conditions �12�–�15�. Since the elastic

solutions are unique, any forms of �I and �II that meet the inter-
face conditions should be regarded as the exact solutions.

In general, if � is harmonic, let us introduce its conjugate 	 to
construct a complex function

f�z� = � + i	 �28�

Then the integral

F�z� = u� + iv� =� f�z�dz �29�

is also a harmonic function. Therefore, we have

u� + iv� =� ��dx − 	dy� + i��dy + 	dx� �30�

where u� and v� are the real and virtual parts, respectively. Based
on Riemann conditions, we have

u,y
� = − v,x

� �31�

and this leads to the following identity:

� ��

�y
dx = −� ��

�x
dy �32�

which is very useful in simplifying the complex forms associated

with the derivative and integral of �̄i
� listed in Eqs. �18�–�21�.

For example, based on the above identity, since �2�̄� is har-
monic, we have

�2�̄3
�

�x2 =� dy
�

�x
�−� ��2�̄�

�y
dx� = − �2�̄� �33�

and

��̄3
�

�x
=� dy�−� ��2�̄�

�y
dx� = −� �2�̄�dx �34�

��̄3
�

�y
=� dy� ��2�̄�

�y
dy =� �2�̄�dy �35�

�2�̄3
�

�x � y
= −� ��2�̄�

�y
dx =� ��2�̄�

�x
dy �36�

In addition

��̄4
�

�x
= y� ��2�̄�

�x
dy = − y� ��2�̄�

�y
dx �37�

��̄4
�

�y
= y� ��2�̄�

�y
dy +� �2�̄�dy = y�2�̄� +� �2�̄�dy

�38�

�2�̄4
�

�x � y
= y

��2�̄�

�x
+� ��2�̄�

�x
dy �39�

�2�̄4
�

�x2 = − y
�

�x� ��2�̄�

�y
dy = − y

�

�x
�2�̄� �40�

Therefore, inserting these forms into Eq. �12�, it can be rewrit-
ten as
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�N1 + N2 − M1�
�2��

�x2 + �M3 − N3��2�� = 0 �41�

It must be remembered that on the interface yI=yII=0; thus we
have ���x ,−y�=��. In addition, any differentiation and integral
with respect to y should change the sign, e.g.,

����x,− y�
�y

= −
���

�y
�42�

� ���x,− y�dy = −� ��dy �43�

Form the second interface condition �Eq. �13��, we have

�N1 + N2 − M1�
�2��

�x � y
+ �N3 + N4 + M3 + M4�� �

�x
�2��dy = 0

�44�
and based on the third interface condition �Eq. �14��, we have

�1
���

�x
+ �2� �2

�y2��dx = 0 �45�

where

�1 = ��− N1
0 − N2

0 + N4
0 + �1 − vI��3N2

0 + 2N4
0 + N1

0��

− �− M1
0 + M3

0 + �1 − vII��M1
0 + 2M4

0�� �46�

�2 = ��N3
0 + �1 − vI��− N2

0 + 2N4
0 + N1

0��

− �M3
0 + �1 − vII��M1

0 + 2M4
0�� �47�

In addition, from the fourth interface condition �Eq. �15��, it leads
to

�3
���

�y
+ �4� �2

�x2��dy = 0 �48�

where

�3 = ��− N1 − N2 + N3 + N4 + �1 − vI��3N2 − 2N4 + N1��

+ �M1 + M3 + M4 − �1 − vII��M1 + 2M4�� �49�

�4 = ��N3 + N4 + �1 − vI��− N2 − 2N4 + N1�� + �M3 + M4 − �1 − vII�


�M1 + 2M4�� �50�

Without loss of generality, we can define N1
0
1 for regulariza-

tion. The conditions �1=0 and �2=0 can lead to

��− 1 − N2 + 4�1 − vI�N2� = − M1 �51�
Based on the first identity of Eq. �44�, it gives

M1 = 1 + N2 �52�
and thus we have

N2 =
� − 1

�k1 + 1
�53�

Therefore we can get

M1 =
��k1 + 1�
�k1 + 1

�54�

From �1=0 and �3=0, we have

��1 − 4�1 − vI��N4 + �2M3 + M4� = 0 �55�
In addition, considering the other two identities in Eqs. �41� and
�44�, we have

N3 − M3 = 0 �56�

N3 + N4 + M3 + M4 = 0 �57�
Therefore it gives

N4 = 0 �58�

M4 = − 2N3 �59�

M3 = N3 �60�
Based on

�2 = 0 �61�

we have

N3 =
�k2 − 1� − ��k1 − 1�

4�� + k2�
M1 �62�

It is found that

�4 = 0 �63�

is automatically satisfied. Therefore, based on the above constants,
all boundary conditions can be met if the Airy stress functions for
the upper and lower planes are given by Eqs. �16� and �17�. The
values of those undetermined constants are exactly the same as
those given by Adeerogba �2� for static elasticity. Also, it is found
that based on these constants, the interface conditions have been
satisfied. Based on the uniqueness of elastic solutions, the stress
functions given by Eqs. �16� and �17� can be regarded as the
closed-form solutions to the bimaterial problem.

5 Conclusions
In this note, we present the rigorous proof for the construction

of Green’s functions for singularities in dissimilar material sys-
tems in terms of Green’s functions in an infinite medium. Al-
though the formulas have been given by Adeerogba �2�, here we
provide detailed derivations based on some specific features asso-
ciated with harmonic and biharmonic functions. The formulas
have been tested in Ref. �4� for the cases of dislocation dipoles,
and the solutions for the dislocation embedded in one medium or
on the interface are exactly the same as those by solving a dislo-
cation problem as done by Dundurs and Mura �1�. More impor-
tantly, the methodology employed here may be extended to obtain
the eigenstress solutions for the defects in other elastic media,
such as a half poroelastic plane.
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In this study both linearized and the exponential forms of the
Phan-Thien–Tanner model (PTT) are used to simulate the peri-
staltic flow in a tube. The solutions are investigated under zero
Reynolds number and infinitely long wavelength assumptions.
Computational solutions are obtained for pressure rise and fric-
tion force. The results of the average chyme velocity in the small
intestine show that the PTT model is in good agreement with the
experimental results, as shown in Table 1. Also, the magnitude of
pressure rise and friction force of the exponential PTT model are
smaller than in linear PTT model for different values of flow rate.
The peristaltic pumping and the augmented pumping are dis-
cussed for various values of the physical parameters of interest.
The pressure rise and friction force of PTT were compared with
other studies in both Newtonian and non-Newtonian cases.
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Keywords: peristalsis, non-Newtonian fluid, Phan-Thien–Tanner
fluid, uniform geometry

1 Introduction
Peristaltic pumping is a form of material transport that occurs

when a progressive wave of area contraction or expansion propa-
gates along the length of a distensible tube containing some ma-
terial. In physiology, peristalsis is used by the body to propel or
mix the contents of a tube as in the ureter, the gastrointestinal
tract, the small blood vessels, the bile duct, and other glandular
ducts. Since then, slowly relaxing fluctuations cause both shear
thinning and viscoelasticity. Also, Phan-Thien–Tanner �PTT�
model exhibits both shear thinning and viscoelasticity. So, we
consider the chyme in the small intestine as PTT fluids. Where,
“viscoelasticity” and “shear thinning” are ordinarily seen only in
much more complicated fluids such as polymer solutions.

Recently, a number of investigators studied the peristaltic trans-
port considering different models were proposed in literature. Sid-
diqui and Schwarz �1� investigated peristaltic flow of a second-
order fluid in a tube and used a perturbation method to second-
order in dimensionless wave number. El Misiery et al. �2� and
Elshehawey et al. �3� studied the peristaltic motion of generalized
Newtonian fluid in a uniform and nonuniform channel. While,
Abd El Naby and El Misiery �4� studied the effects of an endo-
scope and generalized Newtonian fluid on peristaltic motion. They
were concerned by the Carreau fluid that displays shear thinning
which show that the viscosity decreases with increasing shear rate.
El Misiery et al. �5� studied the effects of a fluid with variable
viscosity and an endoscope on peristaltic motion. Both analytic

�perturbation� and numerical for peristaltic transport of a third-
order fluid in a circular cylindrical tube were investigated by
Hayat et al. �6�.

The Phan-Thien–Tanner model found widespread use in the
simulation of the flow of polymer solutions and melts. Indeed, it
found to be the best simple differential model to represent the
elongational properties of polymer solution in entry flows. Even
more relevant is the fact that it can also predict accurately the
shear properties of those same fluids and these features make it
adequate for use in predominantly viscometric flows as given by
Quinzani et al. �7�. For example, Azaiez et al. �8� used the linear-
ized form to predict the entry flow through the 4:1 planar contrac-
tion. Baloch et al. �9� also used it to simulate both expansion and
contraction flows. Oliveira and Pinho �10� studied the analytical
solution for fully developed channel and pipe flow of PTT model
fluids. They used the linearized and the exponential model to
show that the wall shear of PTT fluids is substantially smaller than
the corresponding value for a Newtonian or upper-convected
Maxwell fluid.

Most of the research on the PTT model had been done in the
absence of peristalsis. The purpose of this paper is to study the
peristaltic transport of the PTT fluids in presence of peristalsis in
a tube. Due to the complexity of the nonlinear equations of mo-
tion, we only considered the creeping flow through a uniform
tube. The wall of the tube is transversely displaced by an infinite
sinusoidal traveling wave of large wavelength. The pressure rise
and friction force on the tube have been computed numerically.

2 Phan-Thien–Tanner Model
The constitutive equation for PTT fluids by Phan-Thien and

Tanner �11� and Phan-Tien �12� can be written in a general form
as

f�tr����� + ��� = 2�D �1�

where � and D are the extra stress and deformation-rate tensors, �
is the relaxation time, � is a constant viscosity coefficient, and ��

denotes Oldroyd’s upper-convected derivative.

�� =
��

�t
+ �v · ��� − � · �v − ��v�t · �

Two forms of the PTT model are in common use, namely, the
linearized form given in the original paper Phan-Thien and Tanner
�11�, where the function of f is

f�tr���� = 1 +
��

�
tr��� �2�

and that both forms and the exponential form Phan-Thien �12�
with

f�tr���� = exp���

�
tr���� �3�

In both forms, � is the natural characteristic of the strained state of
the PTT fluid. Moreover, it governs the extensional flow response.
Also, PTT model holds for linear viscoelastic behavior at small
strains ���1� and it is unsuitable for large strains. Note that the
linearized form results from �3� if the trace of the stress tensor is
small and that both forms reduce to the well-known upper-
convected Maxwell �UCM� model when � vanishes.

3 Formulation of the Problem
Consider creeping flow of Phan-Thien–Tanner fluids through a

uniform tube such that the tube has a sinusoidal wave traveling
down its wall. We choose the cylindrical coordinates system

�R̄ , Z̄�, where the Z̄-axis lies along the centerline of the tube and R̄
is the distance measured radially. The geometry of the wall sur-
face is described, as in Fig. 1
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h̄�Z̄, t̄� = a + b sin
2�

�
�Z̄ − ct̄� �4�

where a is the radius of the tube, b is the wave amplitude, � is the
wavelength and c is the wave speed, and t̄ is the time.

If we choose moving coordinates �r̄ , z̄�, which travel in the

Z̄-direction with the same speed as the wave �wave frame�, the
tube length is an integral multiple of wavelength, and the pressure
difference across the tube is constant, then the flow can be treated
as steady. The coordinate frames are related through

z̄ = Z̄ − ct̄, r̄ = R̄ �5�

w̄�r̄, z̄� = W̄�R̄,Z̄ − ct̄� − c, ū�r̄, z̄� = Ū�R̄,Z̄ − ct̄� �6�

where Ū ,W̄ and ū , w̄ are the velocity components in the radial and
axial directions in the fixed and moving coordinates, respectively.

Equations of motion, constitutive equation of Phan-Thien–
Tanner fluids, and boundary conditions in the dimensionless form
neglecting the wave number ��� in the moving coordinates reduce
to

1

r

��ru�
�r

+
�w

�z
= 0 �7�

�P

�z
=

1

r

��r�rz�
�r

�8�

f�zz = 2We�rz

�w

�r
�9�

f�rz =
�w

�r
+ We�rr

�u

�r
�10�

f = 1 + �We��rr + �		 + �zz� �11�

f = exp��We��rr + �		 + �zz�� �12�

where We=kc /a is the Weissenberg number.

�w

�r
= 0, u = 0 for r = 0 �13�

w = − 1, u = −
dh

dz
for r = h = 1 + 
 sin�2�z� �14�

where the variables in dimensionless form are as the following:

z =
z̄

�
,Z =

Z̄

�
,r =

r̄

a
,R =

R̄

a
,t =

ct̄

�
,P =

a2P̄

c��
,� =

a

�
, �ij =

a�̄ij

�c
for i

= j = 1,2,3

w =
w̄

c
,W =

W̄

c
,u =

�ū

ac
,U =

�Ū

ac
,h =

h̄

a
= 1 + 
 sin�2�z� �15�

where 
 is the amplitude ratio, 
=b /a�1.

4 Rate of Volume Flow
The instantaneous volume flow rate in the fixed coordinates

system is given by

Q̄ = 2��
0

h̄

W̄R̄dR̄ �16�

where h̄ is a function of Z̄ and t̄. Substituting from Eqs. �5� and �6�
into Eq. �16� and integrating, we obtain

Q̄ = q̄ + �ch̄2 �17�
where

q̄ = 2��
0

h̄

w̄r̄dr̄ �18�

is the volume flow rate in the moving coordinates system and is
independent of time. Using the dimensionless variables, we find

F =
q̄

2�a2c
=�

0

h

rwdr �19�

The time-mean flow over a period T=� /c at a fixed Z-position is
defined as

Q̂ =
1

T�0

T

Q̄dt̄ �20�

Using Eq. �17� in Eq. �20� and integrating them, we get

� = F +
1

2
�1 +


2

2
� �21�

where

� =
Q̂

2�ca2 �22�

5 Linear PTT Model
Neglecting the wave number ��� implies that �P /�r=0, �rr=0,

and �		=0 and thus the trace of stress tensor becomes �zz. In this
situation, it is easy to verify from the equations of motion that the
pressure gradient dP /dz is a function of z only and the integration
of the longitudinal momentum equation subjected to the boundary
condition �rz=0 at the symmetry line r=0, yields

�rz =
r

2

dP

dz
�23�

With the above simplifications and upon division of the expres-
sions for the two nonvanishing stresses �Eqs. �9� and �10�� the
specific function of f cancels out resulting in

�zz = 2We�rz
2 �24�

with f given by Eq. �11� using �rr=0, �		=0, and Eq. �24�, we can
rewrite Eq. �10� as

�w

�r
= �rz + 2�We2�rz

3 �25�

The solution of Eq. �25� using Eqs. �13�, �14�, and �23� gives

w = − 1 +
r2 − h2

4

dP

dz
+

�We2

16
�r4 − h4��dP

dz
�3

�26�

Substituting from Eq. �26� in Eq. �19� gives

Fig. 1 Peristaltic transport in a uniform tube
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�We2h6�dP

dz
�3

+ 3h4dP

dz
+ 24h2 + 48F = 0 �27�

From the Cardan–Tartaglia formula for the solution of algebraic
cubic equation, it can be readily shown that the real solution of
Eq. �27� is

dP

dz
=

− 1

n
+

n

�We2h2 �28�

where n= �−d+��3We6h6+d2�1/3 and d=12�2F+h2��2We4.

6 Exponential PTT Model
This distribution is obtained in a similar way by inserting the

new f function Eq. �12� into Eq. �10� gives

�w

�r
= �rz exp�2�We2�rz

2 � �29�

Substituting from Eq. �23� in Eq. �29� and using the dimensionless
boundary conditions Eq. �14�, we obtain

w = − 1 +
1

2ds
�exp�s m2r2� − exp�s m2h2�� �30�

where

m =
1

2

dP

dz

s = 2We2�

Substituting Eq. �30� in Eq. �19� gives

2 s2m3�2F + h2� + 1 = exp�s m2h2��1 − s m2h2� �31�
This nonlinear equation is not amenable to an analytical solution
and therefore numerical methods are required. Equation �31� was
solved numerically by using bisection method.

The pressure rise and the friction force on the tube in their
non-dimensional forms, are given by

�p� =�
0

1 �dp

dz
�dz �32�

F� =�
0

1

r2�−
dp

dz
�dz �33�

Substituting Eqs. �28� and �31� in Eqs. �32� and �33� using Eqs.
�15� and �21�, we obtain the pressure rise and friction force flow
rate relationship for the parameters 	
 ,� ,We
.

We noticed that, our results coincide with results obtained by
Jaffrin and Shapiro �13� and Barton and Raynor �14� for the New-
tonian fluid �We=0 or �=0�.

7 Numerical Results and Discussion
The values of various parameters for the transport of chyme in

the small intestine, as reported in Srivastava and Srivastava �15�,
are c=2 cm /m and a=1.25 cm. In this investigation, it may be
noted that the theory of long wavelength and zero Reynolds num-
ber remains applicable as the radius of the small intestine, a
=1.25 cm, is small compared with the wavelength �=8.01 cm.
The values of the Weissenberg number are 	We=0,0.03,0.05

while the values of extensional parameter � are 	�=0.1,0.25,
0.5
 as reported in Azaiez et al. �8� and Hayat et al. �6�. In addi-
tion, � may have an influence on the shear properties, imparting
shear thinning to the fluid provided the parameter is not too small
has shown no effect of � when it is of the order of 10−2. It imposes
an upper limit to the elongational viscosity and that limit is pro-
portional to the inverse of � Pinho and Oliveira �16�.

The relations between the pressure rise, friction force and the
flow rate that are given by Eqs. �32� and �33� are plotted in Figs.
2–6 in the linearized and the exponential PTT model.

In Figs. 2 and 3, the graphs can be divided into two regions, the
first region denotes the peristaltic pumping, where �
0 �positive
pumping� and �P�
0 �adverse pressure gradient�, which occurs
at 	0���0.457, We=0,0.03,0.05
. The other region, where
�
0 and �p��0 �favorable pressure gradient� is called aug-

Fig. 2 The pressure rise versus flow rate for �=0.6 and ε
=0.5

Fig. 3 The pressure rise versus flow rate for �=0.6 and We=0.05
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mented pumping. It occurs at 	0.457���0.8, We=0,0.03,
0.05
. In the case of peristaltic pumping and augmented pumping,
it was noticed that the pressure rise decreases with increasing the
Weissenberg number and the extensional parameter for different

values of flow rate for the linearized and the exponential PTT
model. Moreover, it is independent of the Weissenberg number
and the extensional parameter at certain values of flow rate. Maxi-
mal adverse pressure gradient occurs at zero flow rate in peristal-
tic pumping but maximal favorable pressure gradient occurs at
�=0.8 as shown in Fig. 2. Also, the pressure rise decreases with
the increasing flow rate in peristaltic pumping. While, in the case
of augmented pumping, the pressure rise increases with the in-
creasing flow rate.

Figure 4 shows that the pressure rise decreases with the increas-
ing �1/2We, which characterizes the elasticity and extensibility of
the fluid for different values of flow rate. Moreover, the adverse
and favorable pressure gradients are symmetric about �1/2We for
different values of flow rate in the linearized and the exponential
PTT model. Also, the absolute value of the adverse pressure gra-
dient and favorable pressure gradient has the same value at the
parameter �1/2We=0 for different values flow rate.

Figures 5 and 6 show that the friction force decreases with
increasing the Weissenberg number and the extensional parameter
for the exponential and linear PTT model in the forward and back-
ward flow cases, where positive F� denotes to the backward flow
�reflux phenomena� and when F� is negative, it is designated to
the forward flow �the flow in the direction wave velocity�. More-
over, it is independent of the Weissenberg number and the exten-
sional parameter at certain values of flow rate. In general, Figs. 5
and 6 show that the friction force has an opposite character in
comparison to the pressure rise. Furthermore, the pressure rise in
the exponential PTT model is smaller than linear PTT model, as
shown in Figs. 2, 3, 5, and 6. Comparing our results with Elshe-
hawey and Sobh �18�, who used Oldroyd-B fluid, and Abd El
Naby �19�, who used the Carreau fluid, it was noticed that the
exponential PTT model and linear PTT model have the same be-
havior qualitatively.

We calculated the average chyme velocity in the small intestine
for PTT model and compared it with that reported in Srivastava
and Srivastava �15� as illustrated in Table 1. The average chyme
velocity is calculated for We=0.05 and 
=0.6 and � is obtained
from solving �P�=0 for r=0 for different values of �.

8 Conclusion
From the results of above analysis, it is concluded that the flow

field is noticeable by the presence of an incompressible PTT
model in a peristaltic tube. More precisely

• the absolute values of pressure rise and friction force de-
crease with increasing the Weissenberg number and exten-

Fig. 4 The pressure rise versus ε1/2 We for �=0.6

Fig. 5 The friction force versus flow rate for �=0.6 and ε
=0.5

Fig. 6 The friction force versus flow rate for �=0.6 and We
=0.05
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sional parameter for different values of flow rate for the
linearized and exponential PTT model

• the pressure rise and friction force in the exponential PTT
model is smaller than linear PTT model for various values
of the physical parameters of interest

• the pressure rise decreases with increasing the elasticity and
extensibility of linearized and exponential PTT model for
different values of flow rate

• the PTT model is in good agreement with the experimental
results than the other models especially at a certain value of
extensional parameter

Nomenclature
a � radius of the tube
b � wave amplitude
c � wave speed

D � deformation-rate tensor
f � a function of tr ���

F � nondimensional volume flow rate in the mov-
ing coordinates system

h̄ � dimensional wall surface
� � relaxation time
P � pressure

Q̄ � dimensional instantaneous volume flow rate in
the fixed coordinates system

q̄ � dimensional volume flow rate in the moving
coordinates system

Q̂ � dimensional time mean flow in the fixed coor-
dinates system

�R̄ , Z̄� � dimensional cylindrical fixed coordinates
system

�R ,Z� � nondimensional cylindrical fixed coordinates
system

�r̄ , z̄� � dimensional cylindrical moving coordinates
system

�r ,z� � nondimensional cylindrical moving coordinates
system

t̄ � dimensional time

�Ū ,W̄� � dimensional velocity components in the radial
and axial directions, respectively, in fixed
coordinates

�U ,W� � nondimensional velocity components in the
radial and axial directions, respectively, in
fixed coordinates

�ū , w̄� � dimensional velocity components in the radial
and axial directions respectively in moving
coordinates

�u ,w� � non-dimensional velocity components in the
radial and axial directions, respectively, in
moving coordinates

We=kc /a � Weissenberg number
�=a /� � wave number

� � a parameter related to the elongational behav-
ior of the model

� � nondimensional time mean flow in the fixed
coordinates system

� � wavelength
� � constant viscosity coefficient
� � extra stress tensor

�� � Oldroyd’s upper-convected derivative

=b /a � amplitude ratio
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